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ABSTRACT

Using supersymmetric localization, we consider four-dimensionalN = 2 superconformal
quiver gauge theories obtained from Zn orbifolds of N = 4 Super Yang-Mills theory in the
large N limit at weak coupling. In particular, we show that: 1) The partition function for
arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be
computed in perturbation series, which converges uniformly for |λI | < π2, where λI are the
’t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions
can be explicitly computed to arbitrary orders. There is no universal effective coupling by
which one can express them in terms of correlators of the N = 4 theory. 4) One can define
twisted and untwisted sector operators. At the perturbative orbifold point, when all the
couplings are the same, the correlators of untwisted sector operators coincide with those of
N = 4 Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of
a certain number of planar loops, determined by the conformal dimension of the operator.
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1 Introduction

Among the most remarkable discoveries of the last decades, the AdS/CFT duality occupies
a prominent place and has led to multiple applications and research lines. The best known
example of the duality is N = 4 Super Yang-Mills (SYM) theory, which provides a holo-
graphic description of superstring theory on the AdS5×S5 space. This case has withstood
numerous detailed tests, to great extent, by exploiting integrability of the supersymmet-
ric gauge theory in the planar limit and supersymmetric localization [1]. While there are
other examples of superconformal field theories with exact gravity duals that have been
thoroughly studied – such as ABJM theory or β-deformed N = 1 SYM – comparatively
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much less is understood to what concerns the detailed aspects of how AdS/CFT duality
works in more general N = 2 four-dimensional superconformal gauge theories.

A well-known example is N = 2 superconformal quantum chromodynamics (SCQCD),
with gauge group SU(N) coupled to 2N flavor hypermultiplets. However, this case does not
appear to have a simple string theory dual. Indeed, while there has been some suggested
dual backgrounds in the literature (see e.g. [2, 3, 4]), none of these is of the form AdS5×M5

where one can perform calculations in a controlled classical gravity approximation. Far
from this, the string theory dual seems to be in the deep quantum regime. In particular, one
sign of this is the fact that the string tension appears to be proportional to the logarithm
of the ’t Hooft coupling [5].

There is, however, a whole family of N = 2 four-dimensional superconformal field
theories with simple gravity duals which contain, in a certain limit, N = 2 superconformal
QCD. These are the so-called necklace quivers, with n nodes and SU(N) gauge groups,
joined by bifundamental hypermultiplets. These theories can be engineered by N D3
branes probing an An−1 singularity; which, in the suitable near-brane limit, are dual to
superstring theory on the orbifold on AdS5 × S5/Zn. The simplest example is n = 2, for
which we have an SU(N)×SU(N) gauge theory with two bifundamental hypermultiplets.

It is then natural to wonder to what extent the quiver theory –with a regular gravity
dual– shares common properties with N = 2 SCQCD , with the hope that this may help to
better understand main differences with respect to a gauge theory dual to a regular string
background (studies along these lines have been initiated in [3, 4]).

In superconformal field theories, very important observables are the correlation func-
tions. A particularly interesting set of operators are chiral primary operators (CPO’s). It
turns out that correlators of CPO’s exhibit a very interesting structure. This has been
explored in the case of N = 2 SCQCD in a beautiful series of papers [6, 7, 8, 9]. In this
paper we will compute, for the first time, general two-point correlation functions of chiral
primary operators (CPO’s) in quiver gauge theories. Our main tool will be supersymmetric
localization. Very recently, it was argued [10] that correlation functions on R4 of CPO’s
in N = 2 superconformal theories admitting a Lagrangian description can be computed
as correlation functions of the associated operators in the matrix model that describes the
theory on S4. The subtlety stands in that, upon mapping the theory to the S4, due to the
conformal anomaly, a non-trivial mixing structure among operators of different dimension
is induced. The insight of [10] is that such mixture can be disentangled by a Gram-Schmidt
procedure. Using this prescription, in [11, 12, 13] correlation functions for CPO’s in N = 4
and N = 2 SCQCD were computed. Moreover, it turns out that these operator mixtures
have a very interesting structure, as shown in [12, 13], whose holographic interpretation is
still to be understood.

In this paper we will compute, using supersymmetric localization as well as the Gram-
Schmidt procedure proposed in [10], correlation functions of CPO’s in the An−1 quivers in
the large N theory at weak ’t Hooft coupling. A given n-loop order is, in general, a power
λn/(2π)2n multiplied by a combination of products of Riemann ζ coefficients and rational
numbers. In particular, there is an infinite series of terms which have linear dependence
with ζ(2k − 1) that can be safely isolated and studied, as they are independent irrational
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numbers that can be distinguished from the rest of the terms. As we show, this method can
be applied to the partition function itself. Interestingly, a “modular” structure appears,
as the partition function “factorizes” into contributions from the different quiver nodes.
Of course, when the couplings are equal, we recover the orbifold equivalence first found in
[14]. We should stress that this structure emerges after the functional integration, that is,
in the final result.

The structure of this paper is as follows. In section 2 we give a lightning review of the
An−1 necklace theories of interest and compute, in subsection 2.1, their partition function,
in particular, exhibiting its factorization property. In the rest of the section, we discuss its
convergence properties and its implications for the holographic correspondence. In section
3 we compute the two-point correlation functions on S4 for CPO’s. In subsection 3.1 we
compute the correlation functions for CPO’s in N = 2 superconformal QCD including
all corrections which have linear ζ(2k − 1) dependence. In section 3.2 we turn to the
computation of the correlators on S4 in the quiver gauge theories. In section 3.3 we work
out the A1 case in detail and compute the correlators on R4. Section 4 contains a summary
of the results and concluding remarks. As computations are rather long, we collect their
details in a number of appendices. In appendix A we summarize the notation. In appendix
B we collect the expressions for large N correlation functions in N = 4 SYM computed in
[11]. In appendix C we describe the computation of the partition function. In appendix
D we give the details of the computation of correlators in N = 2 superconformal QCD
including all corrections linear in ζ as well as the first non-linear correction proportional
to ζ(3)2. Finally, in appendix E we provide further details on the computation of the
correlation functions in the quiver gauge theories.

2 Necklace N = 2 superconformal quiver theories

We will be interested on superconformal gauge theories with four-dimensional N = 2
supersymmetry which arise as Zn orbifolds of N = 4 SYM [15]. These theories can be
engineered in string theory on the worldvolume ofN D3 branes probing a C2/Zn singularity.
In fact, in the suitable limit, they admit a weakly curved gravity dual in terms of the
AdS5 × S5/Zn geometry.

These quiver theories can be represented pictorially as in fig. 1 (we show the n = 8
case, as example).

Each node stands for a SU(N) vector multiplet4, while each arrow connecting nodes I
and J corresponds a chiral multiplet in the bifundamental of SU(N)I × SU(N)J –when
I = J this corresponds to an adjoint. Denoting each chiral multiplet between node I and
J as XI,J , the superpotential reads

4One may consider the general case of a gauge group
∏

i SU(Ni). However, superconformal invariance

requires all Ni = N .
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Figure 1: An−1 necklace quiver gauge theories.

W =
n∑
I=1

TrXI,IXI,I+1XI+1,I − TrXI−1,I−1XI−1,IXI,I−1 . (2.1)

where the node n+ 1 is identified with the node 1.
This theory is conformal for arbitrary couplings gI . The perturbative orbifold corre-

sponds to the case gI = g for all nodes. In the dual interpretation, g−2
I − g

−2
I+1 ∼

∫
ΣI
B2,

and ΣI represents the appropriate collapsed 2-cycle in the geometry. 5

Note that each node looks like a copy of N = 2 superconformal QCD with coupling gI ,
as the two neighbouring nodes supply the 2N flavors needed to make the SU(N) gauge
group conformal. Thus, it then follows that in the limit in which all but one coupling –say
g1– go to zero we recover N = 2 superconformal QCD. It is in this sense that the quiver
theory interpolates between a theory –the An−1 quiver– with a regular gravity dual and
N = 2 superconformal QCD.

2.1 The partition function for necklace quiver theories

The partition function (or more precisely, its logarithm) for N = 2 superconformal field
theories has been shown to compute the Kähler potential K on the conformal manifold
[17, 18]. As such, it is subject only to Kähler transformations K(τ, τ)→ K(τ, τ) +F(τ) +
F(τ). Hence, its (non-analytic) dependence on the ’t Hooft coupling λ ∼ (Imτ)−1 is a
physically unambiguous quantity.

5As it is well known, the perturbative orbifold contains a non-zero B2. For instance, in the Z2 case

[16], one has
∫

Σ
B2 = 1

2 and, strictly speaking, one should write g−2
1 − g−2

2 ∼
∫

Σ
B2 − 1

2 .
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The exact partition function for the An−1 necklace quiver gauge theories of interest can
be easily constructed using the general results of [1]. It reads

ZAn−1 =

∫ n∏
I=1

(
dN−1aIi ∆I e

− 8π2

g2
I

∑N
i=1(aIi )2

)
Z1−loop Zinst , ∆I =

∏
i<j

(aIi − aIj )2 , (2.2)

where the variables aIi stand for the eigenvalues of the adjoint scalar in the vector multiplet
XI,I . Zinst stands for the instanton contribution and Z1−loop is the one-loop contribution
given by

Z1−loop =

∏
I

∏
i<j H

2(aIi − aIj )∏
I

∏
i,j H(aIi − aI+1

j )
; (2.3)

where the node n + 1 is identified with the node 1. Note that, as the gauge groups are
SU(N), one has

∑
i a

I
i = 0.

The function H can be written in terms of Barnes G-functions. For the purpose of this
paper, we will define it in terms of the Taylor expansion

lnH(x) = −
∞∑
n=2

(−1)n

n
ζ(2n− 1)x2n , (2.4)

which converges for |x| < 1.
In the following we will be interested on the large N limit of the quiver theories, with

λI ≡ Ng2
I fixed. We will assume, as usual, that instantons are suppressed, as their con-

tributions are multiplied by an exponentially small factor e
− 8π2|k|N

λI , with integer k. While
there have been explicit checks in some N = 2 theories (see e.g. [5, 19]), for the necklace
quiver theories the suppression of instantons at large N remains a plausible assumption
that is yet to be studied (see [14] however for a more detailed account). Therefore from
now on we set Zinst = 1.

2.2 The case of the A1 theory

For concreteness, let us concentrate on the A1 case, corresponding to n = 2. This describes
an N = 2 superconformal gauge theory with gauge group SU(N) × SU(N) and two
bifundamental chiral multiplets. Some aspects of this theory were discussed in [3, 4, 19,
20, 21, 22, 23]. Re-naming a1

i → ai and a2
i → bi, the partition function reads

ZA1 =

∫
dN−1ai

∫
dN−1bi ∆(a)∆(b)Z1−loop e

− 8π2N

λ21

∑
a2i
e
− 8π2N

λ22

∑
b2i

; (2.5)

where

∆(a) =
∏
i<j

(ai − aj)2 ∆(b) =
∏
i<j

(bi − bj)2 , (2.6)
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while

Z1−loop =

∏
i<j H

2(ai − aj)
∏

i<j H
2(bi − bj)∏

i,j H
2(ai − bj)

. (2.7)

Let us consider the weak coupling regime λI � 1 for all nodes. In this regime the
largest contribution to the partition function comes from the region of small aIi , b

I
i . We

can then use the Taylor expansion (2.4) of lnH(x) for small x. This expansion gives rise
to the perturbation series.

The N = 2 quiver partition function can be fully written in terms of correlators of the
N = 4 matrix model. For this, it is convenient to write Z1−loop as

Z1−loop = ef ; f =
∑
i,j

(lnH(ai − aj) + lnH(bi − bj)− 2 lnH(ai − bj)) . (2.8)

Expanding ef = 1 + f + ..., the first term “1” gives rise to a contribution which is the
product of two N = 4 partition function with couplings λ1 and λ2. The remaining terms
give rise to the correlators which are shown in detail in appendix C. In particular, it is
useful to introduce the correlators in the N = 4 matrix model6

〈〈Xn〉〉0 = Cn(gI) =
1

ZN=4(gI)

∫
dN−1a e

− 8π2

g2
I

∑
a2i
(∑

i

ani

)
, (2.9)

〈〈XnXm〉〉0 = Cm,n(gI) =
1

ZN=4(gI)

∫
dN−1a e

− 8π2

g2
I

∑
a2i
(∑

i

ami

)(∑
i

ani

)
;(2.10)

with (see e.g. [24])

ZN=4 = ZSU(N)
N=4 (g) =

√
8πN

g2

(16π2

g2

)−N2

2
(2π)

N
2 G(N + 2) . (2.11)

We can also define the connected correlators in the N = 4 SYM

〈〈Xm1 · · ·Xmn〉〉c0 ≡ Cm1···mn .

For these correlators, it is useful to introduce a deformed version of the N = 4 theory
by adding sources for all single-trace chiral primary operators [10]

ZN=4(gI , {hi,A}) =

∫
dN−1a∆(a) e

− 8π2

g2
I

∑
i a

2
i+

∑N
A=3 hI,A

∑
i a
A
i
. (2.12)

6We shall use the notation 〈〈·〉〉 to denote correlators in the corresponding S4 matrix model. In turn, by

〈〈·〉〉0 we shall denote correlators in the N = 4 matrix model. We shall also use the notation
∑

ani ≡ Xn.

See appendix A for a summarized description of the notation.
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The connected correlators 〈〈Xm1 · · ·Xmn〉〉c0 can then be computed from the associated free
energy F = − lnZN=4 as

〈〈Xm1 · · ·Xmn〉〉c0 = Cm1,··· ,mn(gI) =
∂

∂hI,m1

· · · ∂

∂hI,mn
F (gI , {hI,A})

∣∣∣
{hI,A=0}

. (2.13)

It is straightforward to re-write the Cm1,··· ,mn ’s in terms of the Cm1,··· ,mn ’s, whose expression
has been computed (for instance, in this context and for 2-,3- and 4-points, in [11]). In
particular, in the planar limit, a simple calculation shows that Cm1···mn scales as

Cm1···mn ∼
1

Nn−2
. (2.14)

Taking into account this, we can compute the leading term in N , finding (see appendix C
for details)

lnZA1 = lnZN=4(λ1) + lnZN=4(λ2) + fI , (2.15)

where, modulo an irrelevant additive, λ-independent constant (see (2.11))

lnZN=4(λ) =
N2

2
lnλ (2.16)

and

fI = −
∞∑
n=2

2n∑
k=0

(−1)n+k

n
ζ(2n− 1)

(
2n

k

)
(C2n−k(λ1)− C2n−k(λ2))(Ck(λ1)− Ck(λ2)) . (2.17)

Separating the k sum into odd and even, the odd part trivially vanishes since C2n+1 = 0
(see appendix appendix B). Thus

fI = −
∞∑
n=2

n−1∑
k=1

(−1)n

n
ζ(2n−1)

(
2n

2k

)
(C2n−2k(λ1)−C2n−2k(λ2))(C2k(λ1)−C2k(λ2)) . (2.18)

Introducing

F(λ1, λ2) = e
∑∞
n=2

∑n−1
k=1

(−1)n

n
ζ(2n−1)(2n

2k)C2n−2k(λ1)C2k(λ2) , (2.19)

we have that

efI =
F(λ1, λ2)F(λ2, λ1)

F(λ1, λ1)F(λ2, λ2)
. (2.20)

Using the expressions for C2k given in appendix B, we finally find

lnF(λ1, λ2) = 2N2

∞∑
n=2

(−1)n(2n− 1)!

(4π)2n
ζ(2n− 1)

n−1∑
k=1

λn−k1 λk2
k!(k + 1)!(n− k)!(n− k + 1)!

(2.21)

Thus

ZA1 = ZN=4(λ1)ZN=4(λ2)
F(λ1, λ2)F(λ2, λ1)

F(λ1, λ1)F(λ2, λ2)
. (2.22)
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2.3 The general case of An quiver gauge theories

Coming to the general case, let us write the 1-loop contribution as

Z1−loop =
∏
I

∏
i<j H

2(aIi − aIj )∏
i,j H(aIi − aI+1

j )
=
∏
I

e
∑
i,j lnH(aIi−aIj )−lnH(aIi−a

I+1
j ) . (2.23)

Using the weak coupling expansion (2.4) and∑
i

(aIi )
n = TrXn

I,I ≡ Xn
I ,

(see appendix A for the notation), we can write

Z1−loop =
∏
I

e−
∑∞
n=2

∑2n
k=0

(−1)n+k

n
ζ(2n−1)(2n

k )(X2n−k
I Xk

I−X
2n−k
I Xk

I+1) . (2.24)

We now substitute (2.24) into the partition function (2.2) and expand the exponential, just
as in the n = 2 case. At large N , the leading terms come from the one-point functions.
This amounts to trading TrXa

I,I for Ca(gI), so that in (2.24) we easily recognize the function
F(λI , λJ) defined in (2.21). Therefore, the leading term of the large N partition function
finally reads

ZAn−1({λI}) =
( n∏
I=1

ZN=4(λI)
)F(λ1, λ2) · · ·F(λn, λ1)

F(λ1, λ1) · · ·F(λn, λn)
. (2.25)

This makes the “modular” structure of the large N partition function explicit for arbitrary
couplings.

In summary, drawing the quiver in N = 2 notation, we can construct the large N
partition function using the rules that each node contributes to the partition function a
factor

Znode(λI) =
ZN=4(λI)

F(λI , λI)
; (2.26)

while each link between nodes I and J contributes

Zlink(λI , λJ) = F(λI , λJ) . (2.27)

Then, the leading contribution to the large N partition function for the An−1 quiver is

ZAn−1({λI}) =
n∏
I=1

Znode(λI)Zlink(λI , λI+1) , (2.28)

where the node n+ 1 is identified with the node 1.
Note that setting all but one λI to zero we recover the N = 2 SCQCD case, so that

ZSCQCD(λI) =
ZN=4(λI)

F(λI , λI)
. (2.29)
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2.4 Convergence properties of planar perturbation series

N = 2 SCQCD. Consider the free energy F = − lnZ. In the large N limit, we have
found the exact formula

F = FN=4 + lnF(λ, λ) , (2.30)

where FN=4 = −N2 ln
√
λ and the explicit expression of F(λ, λ) can be read from (2.21).

We get

lnF(λ, λ) = N2

∞∑
n=2

(−1)n(2n)!

n 4n

(
λ

4π2

)n
ζ(2n− 1)

n−1∑
k=1

1

k!(k + 1)!(n− k)!(n− k + 1)!
.

(2.31)
Using the formula

n−1∑
k=1

1

k!(k + 1)!(n− k)!(n− k + 1)!
=

4n+1Γ
(
n+ 3

2

)
√
πn!(n+ 1)!(n+ 2)!

− 2

n!(n+ 1)!
, (2.32)

we obtain
lnF(λ, λ) = N2(S1 − S2) ,

where

S1 = 4
∞∑
n=2

(−1)n

n

(2n)!Γ
(
n+ 3

2

)
√
πn!(n+ 1)!(n+ 2)!

(
λ

4π2

)n
ζ(2n− 1) ,

S2 = 2
∞∑
n=2

(−1)n

n

(2n)!

n!(n+ 1)!

1

4n

(
λ

4π2

)n
ζ(2n− 1) . (2.33)

Let us consider the convergence properties of these series. For n � 1, ζ(2n − 1) → 1.
Using the de Moivre-Stirling formula for the Γ function and factorials, we then easily find
that the radius of convergence of S1 is |λ| < π2, while the radius of convergence of S2 is
|λ| < 4π2. More precisely, the series converges for |λ| ≤ π2, λ 6= −π2. At λ = −π2, it has
a logarithmic branch-point, with behavior ∼ (λ+ π2)3 ln(λ+ π2).

In conclusion, the free energy in N = 2 SCQCD has radius of convergence |λ| = π2.
A finite radius of convergence is expected in the perturbation theory of planar Feynman
diagrams. In quantum field theory, the convergence properties are governed by the combi-
natorics of Feynmann graphs and typically do not depend on the specific observable. Thus
it is natural to expect that other observables will be given by a planar perturbation series
that converges in the region |λ| < π2 (though there may be special observables, e.g. with
high supersymmetry, for which the corresponding planar perturbation series truncates at
some order or has infinite radius of convergence).

N = 2 superconformal quivers. In this case we need to study the convergence prop-
erties of the building block (2.21). In what follows we will show that the series converges
uniformly for all λ1, λ2 with |λ1| < π2, |λ2| < π2. As the expression (2.21) is symmetric
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under λ1 ↔ λ2, we only need to look at the interval 0 < |λ2|/|λ1| < 1. In this case, it is
convenient to write it in the form:

lnF(λ1, λ2) = N2

∞∑
n=2

(−1)n(2n)!

n 4n

(
λ1

4π2

)n
ζ(2n− 1)cn(λ2/λ1) (2.34)

with

cn(λ2/λ1) ≡
n−1∑
k=1

1

k!(k + 1)!(n− k)!(n− k + 1)

(
λ2

λ1

)k
. (2.35)

The coefficient cn(x) satisfies the bound cn(x) < cn(1) in the interval x ∈ [0, 1). Indeed, the
case with least radius of convergence occurs when λ2 = λ1, for which the previous results
apply and we find the condition |λ1| < π2, |λ2| < π2. One can check that for |λ2| � |λ1|
the series converges more rapidly. In this case one can look at the k = 1 term, which goes
as 1/(n!(n− 1)!). The resulting series converges for |λ1| < 4π2.

In conclusion, the free energy for all An−1 quiver models uniformly converges under the
(necessary and sufficient) condition, |λI | ≤ π2, λI 6= −π2, I = 1, ..., n.

It is interesting to note that the same radius of convergence arises in the calculation of
anomalous dimensions of local operators in N = 4 SYM. This is seen from the dispersion
relation of the magnon excitations of the spin chain [25], which has a square-root branch
point at λ = −π2. Interestingly, the same radius of convergence also appears in the
calculation of the free energy and circular Wilson loop in N = 2∗ theory obtained by
perturbing N = 4 SYM by a small mass term for the hypermultiplet [19]. In this case the
free energy and the Wilson loop have both a logarithmic branch-point at λ = −π2.

2.5 Holography

It is clear that the same factorization (2.22), (2.25) applies at strong coupling (λI � 1),
since the factor F can be computed by resumming the perturbation series in the regime
|λI | < π2 and then analytically continuing to λI > π2.

Let us consider the particular case when λI = λ for all I. Then

ZAn−1(λ) =
(
ZN=4(λ)

)n
; (2.36)

thus recovering the result in [14].
This case, being insensitive on the resummation in F, can be extrapolated to strong

coupling in a straightforward way. It follows that

FAn−1 = nFN=4 = −nN2 ln
√
λ , (2.37)

where we have used (c.f. (2.11))

FN=4 = − lnZN=4(λ) = −N2 ln
√
λ . (2.38)
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The holographic interpretation of this formula in the N = 4 case was discussed in section 3
of [26]. The holographic free energy is given by the on-shell supergravity action on AdS5×
S5, supplied by boundary counterterms to cancel quartic, quadratic and a logarithmic
divergence,

Fsugra(AdS5 × S5) = − πL
3

2GN

ln
L

r0

,

where L is the radius of AdS5 and of S5, r0 is a UV short-distance cutoff and GN is the five-
dimensional Newton constant. The logarithmic divergence leads to the trace anomaly in
the energy-momentum tensor. The coefficient πL3

2GN
is identified with N2 by the AdS/CFT

dictionary. In the gauge theory, the logarithmic divergence arises with the same coefficient
proportional to N2 by explicitly computing the one-loop partition function on S4 [27]. A
complete comparison of the formulas requires relating the gauge-theory momentum cutoff
Λ0 and supergravity UV cutoff r0. This has been done in [26] by using a physical argument
that identifies Λ0 to the maximum possible mass in AdS5 corresponding to a string stretched
from the horizon to the cutoff surface. One finds 2πRΛ0 =

√
λr0/L, where we have re-

introduced the S4 radius R. In this way one gets a perfect match between (2.38) and the
supergravity formula.

The identification 2πRΛ0 =
√
λr0/L holds true in the quiver case, since the argument

of [26] only involves the AdS5 part. In the quiver case, the calculation on the supergravity
side is similar, with the only difference that Vol(S5/Zn)/Vol(S5) = 1/n. This implies an
additional factor n in the five-dimensional Newton constant, leading to

Fsugra(AdS5 × S5/Zn) = −nN2 ln
L

r0

= −nN2 ln
√
λ .

in agreement with the localization formula (2.37).

3 Two-point correlation functions for chiral primary

operators

Let us now turn to the computation of extremal correlation functions in N = 2 necklace
quiver theories of the form 〈O(x)O

′
(y)〉, where both O(x) and O′(y) are CPO’s. Note

that conformal invariance determines that the spacetime dependence of the correlator to
be |x− y|−2∆Oδ∆O,∆O′

. Thus, in the following, we will omit such dependence.
In particular, we will be interested on extremal correlation functions of CPO’s in N = 2

theories at large N . Because of this, the basis of CPO’s dramatically simplifies and we just
need to consider single-trace operators (see [11, 13] for recent discussions in this context).
For the present quiver theories, the set of CPO’s will consist of trace of powers of the scalars
in the vector multiplets. Explicitly, the operators of interest are XI

n = TrXn
I,I . The crucial

subtlety is that in the S4, due to the conformal anomaly, CPO’s of different dimensions can
mix. Such mixture must be disentangled through a Gram-Schmidt procedure as described
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in [10]. Then, in general, the R4 operator Xn corresponds to a linear combination of the
S4 operators as

XI
n =

∑
m≤n

cI,mJ,nX
J
m

∣∣∣
S4
, (3.1)

where the operators XI
n

∣∣∣
S4

are given by XI
n

∣∣∣
S4

=
∑

i(a
I
i )
n, with aIi being the real part of the

eigenvalues of the scalar in the I’th vector multiplet. These are nothing but the coordinates
of the Cartan torus of the gauge group over which the partition function integrates. As
described, the mixing coefficients cI,mJ,n are to be determined through the Gram-Schmidt

procedure. Note that cJ,nI,n = δJI . Then, the correlators on R4 are

〈XI
nX

J

n′〉 =
∑
m,m′

cI,mL,nc
J,m′

L′,n′〈〈X
L
m

∣∣∣
S4
X
L′

m′

∣∣∣
S4
〉〉 ; (3.2)

where 〈〈AB〉〉 stands for the correlator in the matrix model for the theory on S4. Note
that inside 〈〈·〉〉 only operators in the S4 matrix model can appear. Thus, we can omit the
S4 label at no risk of confusion. Moreover, in the S4 matrix model XI becomes purely real,
and thus the hermitean conjugation can be dropped as well.

From (3.2) we see that the quantities of primary interest are the two-point functions in
the sphere matrix model. These are given by

〈〈XI
nX

J
m〉〉 = Z−1

An−1

∫ n∏
I=1

(
dN−1aIi ∆I e

− 8π2

g2
I

∑N
i=1(aIi )2

)
Z1−loop Zinst

(∑
(aIi )

n
)(∑

(aJi )m
)
.

(3.3)
Note that in the mapping between R4 and S4 operators defined in (3.1) there is a

contribution –only non-vanishing for even n– of the identity operator. This particular
mixing is easily taken into account by slightly modifying (3.1) as

XI
n =

∑
m≤n

ĉI,mJ,n X J
m , (3.4)

where X J
m = XJ

m − 〈〈XJ
m〉〉. For these we have

〈〈X I
n X J

m 〉〉 = 〈〈XI
nX

J
m〉〉 − 〈〈XI

n〉〉〈〈XJ
m〉〉 ; (3.5)

so that the correlators of interest are given by

〈XI
nX

J

n′〉 =
∑
m,m′

ĉI,mL,n ĉ
J,m′

L′,n′〈〈X
L
mX L′

m′ 〉〉 , (3.6)

where the ĉI,mL,n are to be fixed through the Gram-Schmidt procedure as in [10]. For clarity,
we summarize the notation used throughout the paper in appendix A. Note that (3.5) is
nothing but the corresponding connected correlator in the quiver theory.
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In the following, using (3.3), we will compute (3.6) at large N . Just as in the earlier
discussion of the partition function, in the large N limit the instanton factor Zinst in (3.3)
will be set to 1. Moreover, we will consider the weak coupling regime where we can use
the expansion of (2.4) to compute, perturbatively, the correlators on S4.

3.1 Correlators in N = 2 superconformal QCD

Two-point functions in N = 2 superconformal QCD at large N have been computed in
[11] including the terms with coefficients proportional to ζ(3) and ζ(3)2. Our first task will
be to improve these results by computing all the terms in the planar expansion that have
coefficients with linear dependence on the ζ’s (as well as the ζ(3)2 term).

In the case of N = 2 SCQCD we just have a single gauge group. Denoting the scalar
in the vector multiplet by X, the CPO’s of interest are Xn ≡ TrXn. These CPO’s are
represented in S4 by Xn =

∑
i a

n
i , where ai are the variables of integration in the S4

partition function. As explained above (see appendix A for a summary of the notation),
〈XnX̄m〉 will denote the correlators for the theory on R4, while 〈〈XnXm〉〉 will denote
correlators for the theory on S4. Moreover, Xn will refer to VEV-less operators in S4,
whose two-point correlators are nothing but the connected two-point correlators in the S4

matrix model.
By expanding the one-loop determinant we can compute the connected correlator in

N = 2 SCQCD in the planar perturbative expansion in powers of λ. In general, this will
include an infinite series of corrections to theN = 4 correlator with coefficients proportional
to products of ζ functions. We can unambiguously isolate and compute the contribution
of the terms with linear dependence on ζ ′s. In particular, they could be compared with
similar terms that should appear in a direct Feynman diagram calculation. Thus, including
all terms linear in ζ as well as the first ζ2 term proportional to ζ(3)2, the result is (we
compile the details in appendix D)

〈〈XnXm〉〉 = Cn,m −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
M

(1)
k,q,n,m +

9

2
ζ(3)2M (2) , (3.7)

where, to leading order in N , we have defined

M
(1)
k,q,n,m = Ck,n,mC2q−k + C2q−k,n,mCk + Ck,nC2q−k,m + C2q−k,nCk,m ; (3.8)

and

M (2) = 4C2C2C2,2,n,m+8C2C2,2,nC2,m+8C2C2,2,mC2,n+8C2,2C2,mC2,n+8C2C2,2C2,n,m . (3.9)

For concreteness, let us concentrate on correlators for even operators. For them, in order
to have a non-vanishing result, k in M (1) must be even. Then, using the results for C2m,2n,2r

and C2m,2n,2r,2s given in appendix B, we can easily compute the connected correlators
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〈〈XnXm〉〉 and perform the Gram-Schmidt orthogonalization to find the correlators for
the theory on R4. Explicitly, up to ζ(13), for the first few dimensions we find

〈X2X2〉 =
2λ2

(2π)4

[
1− 9

4
ζ(3)

( λ

4π2

)2

+
15

2
ζ(5)

( λ

4π2

)3

+
(45

8
ζ(3)2 − 175

8
ζ(7)

)( λ

4π2

)4

+
4095

64
ζ(9)

( λ

4π2

)5

− 98637

512
ζ(11)

( λ

4π2

)6

+
153153

256
ζ(13)

( λ

4π2

)7

+ · · ·
]

(3.10)

〈X4X4〉 =
4λ4

(2π)8

[
1− 3ζ(3)

( λ

4π2

)2

+ 10ζ(5)
( λ

4π2

)3

+
(63

8
ζ(3)2 − 1855

64
ζ(7)

)( λ

4π2

)4

+
2709

32
ζ(9)

( λ

4π2

)5

− 16401

64
ζ(11)

( λ

4π2

)6

+
6435

8
ζ(13)

( λ

4π2

)7

+ · · ·
]

(3.11)

〈X6X6〉 =
6λ6

(2π)12

[
1− 9

2
ζ(3)

( λ

4π2

)2

+ 15ζ(5)
( λ

4π2

)3

+
(243

16
ζ(3)2 − 1365

32
ζ(7)

)( λ

4π2

)4

+
7749

64
ζ(9)

( λ

4π2

)5

− 181797

512
ζ(11)

( λ

4π2

)6

+
276705

256
ζ(13)

( λ

4π2

)7

+ · · ·
]

(3.12)

〈X8X8〉 =
8λ8

(2π)16

[
1− 6ζ(3)

( λ

4π2

)2

+ 20ζ(5)
( λ

4π2

)3

+
(99

4
ζ(3)2 − 455

8
ζ(7)

)( λ

4π2

)4

+
2583

16
ζ(9)

( λ

4π2

)5

− 30261

64
ζ(11)

( λ

4π2

)6

+
45903

32
ζ(13)

( λ

4π2

)7

+ · · ·
]

(3.13)

These expressions contain and extend the ones found in [11] to higher orders in the planar
perturbative expansion.

3.1.1 Effective couplings for N = 2 superconformal QCD

It was suggested in [20] that observables in the purely gluonic SU(2, 1|2) subsector of
any planar N = 2 theory can be computed upon performing a coupling replacement in the
N = 4 result. Elaborating on this, in [21] it was shown that the VEV of the supersymmetric
circular Wilson loop in SCQCD and in the An−1 quiver gauge theories has exactly the same
structure as in the N = 4 theory, indeed with the replacement of the coupling λ by a new
effective coupling. A natural question is whether this observation also applies to two-point
correlation functions. In other words, whether the two-point correlation functions of all
CPO’s have the same form as in the N = 4 theory, in terms of a new universal, effective
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coupling, for all correlators. Below we will show that this works for the leading ζ(3) and
ζ(3)2 terms, but not in general for the other contributions.

Let us first recall how the results of [21] arise using the formulas given in the appendix.
For the VEV, we have (for simplicity, here we show only linear terms in the ζ’s)

〈〈Xn〉〉 = 〈〈Xn〉〉0 −
∞∑
q=2

q−1∑
k=1

(−1)q
ζ(2q − 1)

q

(
2q

2k

)
Mk,q,n , (3.14)

with

Mk,q,n = C2kC2q−2k,n + C2q−2kC2k,n . (3.15)

With this, it is easy to compute the VEV of the circular Wilson loop

〈W 〉 =
1

N
〈Tre−2πX〉 , (3.16)

to all orders for the terms with linear ζ coefficient, by expanding in powers of X. This
agrees with the results in [21], showing that the VEV of the circular Wilson loop is equal
to that of N = 4 SYM [24] upon performing the same coupling replacement given in
[21, 22, 23].

Now let us consider two-point correlation functions. Let us denote the required effective
coupling in the correlator 〈XnXn〉 by λ

(n)
eff . For the terms with coefficients linear in ζ(2n−1),

if one tries to re-write the correlators for 〈X2nX2n〉 in terms of an effective coupling on the
N = 4 SYM result, one finds

λ
(2)
eff = λ

[
1− 9

8
ζ(3)

( λ

4π2

)2

+
15

4
ζ(5)

( λ

4π2

)3

(3.17)

−175

16
ζ(7)

( λ

4π2

)4

+
4095

128
ζ(9)

( λ

4π2

)5

− 98637

1024
ζ(11)

( λ

4π2

)6

+ · · ·
]

λ
(4)
eff = λ

[
1− 3

4
ζ(3)

( λ

4π2

)2

+
5

2
ζ(5)

( λ

4π2

)3

(3.18)

−1855

256
ζ(7)

( λ

4π2

)4

+
2709

128
ζ(9)

( λ

4π2

)5

− 16401

256
ζ(11)

( λ

4π2

)6

+ · · ·
]

λ
(6)
eff = λ

[
1− 3

4
ζ(3)

( λ

4π2

)2

+
5

2
ζ(5)

( λ

4π2

)3

(3.19)

−455

64
ζ(7)

( λ

4π2

)4

+
2583

128
ζ(9)

( λ

4π2

)5

− 60599

1024
ζ(11)

( λ

4π2

)6

+ · · ·
]

λ
(8)
eff = λ

[
1− 3

4
ζ(3)

( λ

4π2

)2

+
5

2
ζ(5)

( λ

4π2

)3

(3.20)

−455

64
ζ(7)

( λ

4π2

)4

+
2583

128
ζ(9)

( λ

4π2

)5

− 30261

512
ζ(11)

( λ

4π2

)6

+ · · ·
]

As it is clear from these expressions, there is no universal effective coupling. It is however
interesting to note that λ

(4)
eff and λ

(2)
eff differ at O(ζ(3)); λ

(6)
eff and λ

(4)
eff differ at O(ζ(7)); λ

(8)
eff

and λ
(6)
eff differ at O(ζ(11)); thus suggesting a pattern such that
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λ
(n+2)
eff − λ(n)

eff ∼ O
(
ζ(2n− 1)λn

)
. (3.21)

Although we have only shown this property for the terms linear in ζ’s, this is sufficient
to conclude that there is no universal effective coupling. Of course, to a given order in λ
there will be contributions not only linear in ζ but also non-linear, i.e. products of ζ’s
that we have not computed. It is nevertheless tempting to conjecture that (3.21) holds as
a full-fledged ’t Hooft coupling expansion.

An equivalent way to phrase this result is noticing that the correlator 〈XnXn〉 in N =
2 SCQCD can be written as that of N = 4 theory upon a coupling replacement plus
corrections of the form

〈XnXn〉SCQCD = 〈XnXn〉N=4(λeff)
[
1 +O

(
ζ(2n− 1)λn

)]
=

nλneff

(2π)2n

[
1 +O

(
ζ(2n− 1)λn

)]
; (3.22)

being the effective coupling

λeff = λ
[
1− 3

4
ζ(3)

( λ

4π2

)2

+
5

2
ζ(5)

( λ

4π2

)3

− 455

64
ζ(7)

( λ

4π2

)4

+
2583

128
ζ(9)

( λ

4π2

)5

− 30261

512
ζ(11)

( λ

4π2

)6

+ · · · ] . (3.23)

In terms of g2 = λ
(4π)2

this is

g2 → g2
(

1− 12g4ζ(3) + 160g6ζ(5)− 1820g8ζ(7) + 20664g10ζ(9)− 242088g12ζ(11) + · · ·
)
.

(3.24)
This replacement differs from that in [21, 22, 23] already at order ζ(5).

From the above results, it is clear, for example, that if we restrict the discussion to
correlators 〈XnXn〉SCQCD with n > 2, then up to (and including) the order ζ(3)λ2 we can
describe correlators in terms of an effective coupling. We can test this by also including the
term with coefficient ζ(3)2. Thus let us compute correlators with n > 2 by truncating the
series and keeping only the terms with coefficients proportional to ζ(3) and ζ(3)2. Starting
with the case of odd n, m, we find

〈〈XnXm〉〉 =
[
1− 3

8
ζ(3)(n+m)

( λ

4π2

)2

+
9

128
ζ(3)2(m+n)(6+m+n)

( λ

4π2

)4]
Cn,m (3.25)

Here we recognize the first terms in the expansion of

〈〈XnXm〉〉 =
[
1− 3

4
ζ(3)

( λ

4π2

)2

+
9

8
ζ(3)2

( λ

4π2

)4]n+m
2

Cn,m (3.26)
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In turn, since the Cn,m are nothing but the correlators in N = 4 theory, proportional

to λ
n+m

2 , we see that the result in N = 2 superconformal QCD up to the order we are
discussing is akin to taking the N = 4 correlators on S4 and perform the substitution

λ→ λeff = λ
(

1− 3

4
ζ(3)

( λ

4π2

)2

+
9

8
ζ(3)2

( λ

4π2

)4)
. (3.27)

Moreover, since the substitution is independent on n, m, the Gram-Schmidt procedure can
be directly imported from the N = 4 case. Thus, the result for R4 correlators is finally
identical to that of N = 4 theory – given, for instance, in eq. (3.54) in [11]– with the
substitution (3.27).

In terms of g2 = λ
(4π)2

, this substitution corresponds to

g2 → g2(1− 12g4ζ(3) + 288g8ζ(3)2) . (3.28)

This is the same coupling replacement found in [21, 22, 23].
Let us now consider two-point correlation functions of even operators. For n,m ≥ 2,

we now find

〈〈XnXm〉〉 =
[
1− 3ζ(3)

( λ

4π2

)2 (m+ n)(12 + 2m+ 2n+mn)

8(2 +m)(2 + n)

]
Cn,m , (3.29)

which recovers the same formula given in eq. (4.32) in [11] (to compare, one should replace
above (n,m)→ (2n, 2m)). Thus, we can again import the Gram-Schmidt orthogonalization
from the N = 4 case leading to the final result in eq. (4.40) in [11]. The conclusion is as
follows. For n > 2, the correlator 〈XnXn〉 in N = 2 SCQCD, including the terms with
coefficients ζ(3) and ζ(3)2, given by eq. (4.40) in [11], can also be obtained by taking the
N = 4 result upon performing the substitution (3.27). On the other hand, the correlator
for 〈X2X2〉 given in eq. (4.40) of [11] (which, it should be stressed, is in agreement with
previous results in the literature [9], [8],[7],[10]) does not follow this pattern, as expected,
given the formula (3.22).

3.2 The quiver theory case

For general An−1 quivers, the correlators of interest are 〈〈X L
n X L

m 〉〉, 〈〈X L
n X L+1

m 〉〉 and
〈〈X L

n X M
m 〉〉 where |L−M | > 1.

It is useful to explicitly show the ’t Hooft coupling dependence in the correlators. To
this purpose, we define

C L
m1,··· ,mn = λ

m1+···+mn
2

L Ĉm1,··· ,mn , (3.30)

where Ĉm1,··· ,mn is a copy of C L
m1,··· ,mn evaluated at λL = 1. Then, following the same

strategy as for N = 2 SCQCD , we find (see appendix E for details of the computation)
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〈〈X L
n X L

m 〉〉 = 〈〈X L
n X L

m 〉〉SCQCD(λL)

+
∞∑
q=2

q−1∑
k=1

(−1)q

q
ζ(2q − 1)

(
2q

2k

)(
λkL+1λ

m+n
2

+q−k
L Ĉ2kĈ2q−2k,n,m + λq−kL−1λ

m+n
2

+k

L Ĉ2q−2kĈ2k,n,m

)
;

(3.31)

〈〈X L
n X L+1

m 〉〉 =
∞∑
q=2

2q−1∑
k=1

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)
λ
m+k

2
L+1 λ

n+2q−k
2

L Ĉm,kĈ2q−k,n ; (3.32)

〈〈X L
n X M

m 〉〉 = 0 , |L−M | > 1 . (3.33)

The coefficients Ĉm1,··· ,mn are given in terms of factorials (see appendix B).

3.3 The A1 quiver

In the case of the A1 theory, we have two sets of VEV-less operators in the S4 matrix model
X 1

n ≡ Xn, X 2
n ≡ Yn. They are constructed in terms of the scalar fields in the N = 2

vector multiplets of the two gauge groups SU(N)× SU(N). To begin with, note that the
A1 case is special, as, to a given node, both nearest neighbour nodes are the same. Thus,
the 〈〈XnYm〉〉 correlator must be computed separately for this case (see appendix E). We
find 7

〈〈XnXm〉〉 = λ
n+m

2
1

[
λ
−n+m

2
1 〈〈XnXm〉〉SCQCD

+
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
λ
k
2
2 λ

2q−k
2

1 ĈkĈ2q−k,n,m + λ
k
2
1 λ

2q−k
2

2 Ĉ2q−kĈk,n,m

)]
,

〈〈YnYm〉〉 = λ
n+m

2
2

[
λ
−n+m

2
2 〈〈YnYm〉〉SCQCD

+
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
λ
k
2
1 λ

2q−k
2

2 ĈkĈ2q−k,n,m + λ
k
2
2 λ

2q−k
2

1 Ĉ2q−kĈk,n,m

)]
,

〈〈XnYm〉〉 = λ
n
2
1 λ

m
2

2

∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
λ

2q−k
2

1 λ
k
2
2 Ĉ2q−k,nĈk,m + λ

2q−k
2

2 λ
k
2
1 Ĉ2q−k,mĈk,n

)
.

(3.34)

We now define the untwisted Un and twisted Tn operators as

Un =
λ
−n

2
1√
2

Xn +
λ
−n

2
2√
2

Yn , Tn =
λ
−n

2
1√
2

Xn −
λ
−n

2
2√
2

Yn . (3.35)

7From the formulas of appendix E, see e.g. (E.24), we extract the coupling dependence and re-write

the correlator in terms of the hatted functions.
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These operators have well defined transformation properties under the Z2 action which
exchanges the two gauge groups, i.e. Un → Un and Tn → −Tn (see also [28]). Note that
the perturbative orbifold corresponds to setting λ1 = λ2 = λ. On the other hand, the limit
of one coupling going to zero gives us back the N = 2 SCQCD case. Then

〈〈UnTm〉〉 = −
∞∑
q=2

2q∑
k=0

(−1)q+k

2q
ζ(2q−1)

(
2q

k

)[(
λq1−λ

q
2

)
M̂ (1)−

(
λ
k
2
2 λ

2q−k
2

1 −λ
k
2
1 λ

2q−k
2

2

)
M̂
′(1)
k,q,n,m

]
(3.36)

with

M̂
′(1)
k,q,n,m = ĈkĈ2q−k,n,m − Ĉ2q−k,nĈk,m − Ĉ2q−kĈk,n,m + Ĉ2q−k,mĈk,n . (3.37)

In turn, using the explicit form of the N = 2 SCQCD correlator in (3.7), we have

〈〈UnUm〉〉 = Ĉn,m−
∞∑
q=2

2q∑
k=0

(−1)q+k
ζ(2q − 1)

2q

(
2q

k

)[(
λq1+λq2

)
−
(
λ
k
2
2 λ

2q−k
2

1 +λ
k
2
1 λ

2q−k
2

2

)]
M̂

(1)
k,q,n,m ;

(3.38)

where M̂
(1)
k,q,n,m stands for M

(1)
k,q,n,m evaluated at coupling one and

〈〈TnTm〉〉 = Ĉn,m

−
∞∑
q=2

2q∑
k=0

(−1)q+k
ζ(2q − 1)

2q

(
2q

k

)[(
λq1 + λq2

)
M̂

(1)
k,q,n,m −

(
λ
k
2
2 λ

2q−k
2

1 + λ
k
2
1 λ

2q−k
2

2

)
M̂
′′(1)
k,q,n,m

]
;

(3.39)

being

M̂
′′(1)
k,q,n,m = Ĉk,n,mĈ2q−k + Ĉ2q−k,n,mĈk − Ĉk,nĈ2q−k,m − Ĉ2q−k,nĈk,m . (3.40)

3.3.1 The case λ1 = λ2

To begin with, since at the perturbative orbifold both couplings are equal, there is no
need to introduce the extra coupling factors in the definition of Un and Tn to preserve
the Z2 symmetry. In fact, in this case it will prove more useful to simply define Un =
2−

1
2 (Xn + Yn), Tn = 2−

1
2 (Xn − Yn) (that this is equivalent to multiplication by the

appropriate factor of λ = λ1 = λ2 the above formulas).
In the perturbative orbifold limit the two towers Un and Tn decouple, as they become

orthogonal due to (3.36). Then, notably, at the perturbative orbifold point λ1 = λ2 = λ
the correlator for the untwisted fields Un becomes identical to that of N = 4 SYM, while
that for the twisted fields becomes
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〈〈TnTm〉〉 = λ
n+m

2 Ĉn,m−2λ
n+m

2

∑
q=2

2q∑
k=0

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
λq
(
Ĉk,nĈ2q−k,m+Ĉ2q−k,nĈk,m

)
.

(3.41)
One can then perform the Gram-Schmidt orthogonalization for the tower of untwisted
fields (this is just identical to the N = 4 case in [11]) finding

〈UnUn〉 =
nλn

(2π)2n
. (3.42)

This result might be compared with the dual holographic computation in [29], where 2-
point functions for N = 4 CPO’s are computed using holography. In turn, N = 4 SYM
is the worldvolume theory on D3 branes on C3 and the three chiral multiplets correspond
to each C plane. In N = 2 notation, one of them is part of the vector multiplet, and this
is the one whose correlators are computed in [29]. In constructing the quiver theory, the
orbifold can be taken to act on the transverse C2. Thus, the computation in [29] should
go essentially unchanged for the untwisted sector, thus leading to the result (3.42).

In turn, running the Gram-Schmidt for the twisted sector operators, we find

〈T2T 2〉 =
2λ2

(2π)4

[
1− 3

2
ζ(3)

( λ

4π2

)2

+ 5ζ(5)
( λ

4π2

)3

− 245

16
ζ(7)

( λ

4π2

)4

+
189

4
ζ(9)

( λ

4π2

)5

−38115

256
ζ(11)

( λ

4π2

)6

+
61347

128
ζ(13)

( λ

4π2

)7

− 6441435

4096
ζ(15)

( λ

4π2

)8

+ · · ·
]
(3.43)

〈T4T 4〉 =
4λ4

(2π)8

[
1− 35

32
ζ(7)

( λ

4π2

)4

+
63

8
ζ(9)

( λ

4π2

)5

− 2541

64
ζ(11)

( λ

4π2

)6

+
5577

32
ζ(13)

( λ

4π2

)7

−2927925

4096
ζ(15)

( λ

4π2

)8

+ · · ·
]

(3.44)

〈T6T 6〉 =
6λ6

(2π)12

[
1− 231

256
ζ(11)

( λ

4π2

)6

+
1287

128
ζ(13)

( λ

4π2

)7

− 289575

4096
ζ(15)

( λ

4π2

)8

+ · · ·
]
(3.45)

〈T8T 8〉 =
8λ8

(2π)16

[
1− 6435

8192
ζ(15)

( λ

4π2

)8

+ · · ·
]

(3.46)

It is interesting to note that these correlators are compatible with a generic form

〈TnT n〉 =
nλn

(2π)2n

[
1 +O(ζ(2n− 1)λn)

]
, (3.47)

which exhibits a remarkable cancellation of several loop Feynman diagrams, as one might
naively expect that all correlators would contain corrections starting with ζ(3)λ2.
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Note the analog result in the difference in the correlator (3.22). It must be stressed that
this result takes into account only linear terms in ζ(2n − 1). It is tempting to conjecture
that (3.47) holds beyond linear terms in the ζ’s, i.e. that the 〈TnTm〉 correlators differ
from the N = 4 correlators in O(λ2n), as suggested by (3.47). in an expansion in λ. As a
check, let us compute the first non-linear term, namely the term proportional to ζ(3)2. To
leading order in the large N expansion, in the A1 quiver case with λ1 = λ2, we find that
the ζ(3)2 corrections to the correlators are given by

〈〈XnXm〉〉 = · · ·+ 72λ4+n+m
2 ζ(3)2 Ĉ2,2 Ĉ2,m Ĉ2,n ; (3.48)

〈〈YnYm〉〉 = · · ·+ 72λ4+n+m
2 ζ(3)2 Ĉ2,2 Ĉ2,m Ĉ2,n ; (3.49)

〈〈XnYm〉〉 = · · · − 72λ4+n+m
2 ζ(3)2 Ĉ2,2 Ĉ2,m Ĉ2,n ; (3.50)

where · · · stands for the terms linear in ζ’s computed above.
To begin with, note that for odd correlators the ζ(3)2 correction immediately vanishes.

In addition, it is clear that both towers of twisted and untwisted operators are still orthog-
onal, since 〈〈UnTm〉〉 = 0. Moreover, as for the 〈UnUm〉 correlator, the structure above
(equal contribution, but opposite sign for the 〈〈XnXm〉〉 and 〈〈XnYm〉〉 correlators) im-
plies that there is no correction to (3.42), as expected. Finally, let us consider the 〈TnTm〉
correlator. Note first that, aside from the λ

n+m
2 overall scaling of the correlator, the ζ(3)2

correction starts with a relative λ4 in the term inside the brackets in (3.47). Thus, it can
potentially contribute for n ≥ 4. Remarkably, one can check that such correction cancels
for all correlators with n ≥ 4. Thus, this supports the conjecture that (3.47) holds not only
for the terms which are linear in ζ(2n−1), but that the first correction to the N = 4 result
for the 〈TnTm〉 correlator is proportional to λ2n as in (3.47). While this is a conjecture
(since the much harder non-linear terms in all ζ’s are unknown to us), it is remarkable
that, at least for the linear terms in ζ(2n−1) and including ζ(3)2, as the dimension grows,
the correlator becomes closer and closer to that in N = 4 SYM (in turn identical to the
free theory).

3.4 The general case of An−1 quiver gauge theories

Inspired by the A1 case, let us now consider the perturbative orbifold case where λI = λ
for all gauge groups. It is then natural to define untwisted and twisted sectors as [28]

Un =
1√
n

∑
K

X K
n , T I

n =
1√
2

(
X I

n −X I+1
n

)
. (3.51)

Note that, as expected, there are n− 1 twisted sectors. Then

〈〈UnT
I
m〉〉 =

1√
2n

(
〈〈X I−1

n X I
m〉〉+ 〈〈X I

n X I
m〉〉+ 〈〈X I+1

n X I
m〉〉

−〈〈X I
n X I+1

m 〉〉 − 〈〈X I+1
n X I+1

m 〉〉 − 〈〈X I+2
n X I+1

m 〉〉
)

; (3.52)
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which obviously vanishes since for λI = λ we have that both 〈〈X I
n X I+1

m 〉〉 and 〈〈X I
n X I

m〉〉
are equal for all I’s. Thus, we can perform the Gram-Schmidt in the Un tower separately.
To that mattter

〈〈UnUm〉〉 =
1

n

∑
K,L

(
〈〈X K

n X L
m 〉〉 =

1

n

∑
K

〈〈X K
n X K

m 〉〉+ 〈〈X K
n X K−1

m 〉〉+ 〈〈X K
n X K+1

m 〉〉

)
.

(3.53)
Since at the perturbative orbifold point all couplings coincide, this is just equal to

〈〈UnUm〉〉 = 〈〈X L
n X L

m 〉〉+ 〈〈X L
mX L+1

n 〉〉+ 〈〈X L
n X L+1

m 〉〉 , (3.54)

for some fixed L. Using our explicit formulas we get

〈〈UnUm〉〉 = 〈〈XnXm〉〉SCQCD(λ) +
∞∑
q=2

q−1∑
k=1

(−1)q

q
ζ(2q − 1)

(
2q

2k

)
λm+n+q

(
Ĉ2kĈ2q−2k,n,m + Ĉ2q−2kĈ2k,n,m + Ĉm,2kĈ2q−2k,n + Ĉn,2kĈ2q−2k,m

)
.

(3.55)

Comparing with (3.7), here we recognize in the second line M̂ (1), so that 〈〈UnUm〉〉 = Cn,m,
which coincides with the N = 4 correlator on S4. Therefore, for the R4 correlators, we
finally recover the N = 4 result

〈UnUm〉 =
nλn

(2π)2n
δn,m . (3.56)

On the other hand, the twisted sectors are now more intricate, as they mix in a non-
trivial way; that is, 〈〈T I

n T J
m 〉〉 does not only vanish if I = J . Therefore, the orthogonal-

ization will mix the various twisted sectors.

4 Conclusions

In this paper we have studied several aspects of N = 2 necklace quiver gauge theories.
These theories are particularly interesting given that they admit a weakly curved gravity
dual in terms of the geometry AdS5 × S5/Zn. This permits to carry out accurate tests
of AdS/CFT duality with the same level of precision as in the duality between N = 4
SYM and superstring theory on AdS5 × S5 (see e.g. [4]). As one step further to explore
this duality, in this paper we have computed new exact observables in the quiver theory,
namely two-point correlation functions, by using supersymmetric localization.

In the limit where all couplings but one vanish, correlation functions in the quiver
gauge theories reduce to those of N = 2 superconformal QCD, which, however, does not
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have a simple gravity dual where one can rely on classical supergravity calculations. Thus,
our results can also be used to test what common properties are shared between theories
without a classical gravity dual and gauge theories with such a gravity dual. This can be
very interesting in order to elucidate the features that the putative holographic dual to
N = 2 SCQCD should exhibit.

We have found that the partition function for necklace quiver theories at infinite N
exhibits a rather interesting “modular” structure allowing one to construct the partition
function by adding a factor of the N = 2 SCQCD partition function for each node and
a factor of F(λI , λI+1) for each link (c.f. (2.28)), thus extending the result in [14] valid
for the perturbative orbifold point when all couplings are equal. We should stress that
this happens in the final result, that is, after carrying out the integration over aIi (which
amounts to a full computation of the functional integral that defines the partition function).
This interesting structure seems to hold for general N = 2 theories admitting a Lagrangian
description, since our derivation extends in a straightforward way to the generic N = 2
partition functions on S4 computed by Pestun [1]. It would be very interesting to study
each such building block F(λI , λI+1) in the limit where all λI → ∞ with fixed λI/λJ .
This can be presumably studied with the techniques of [5, 22] and could lead to a very
interesting test of AdS/CFT holography (generalizing our discussion of section 2.5 to the
case of different couplings λI 6= λJ). In addition, one could investigate whether, by taking
suitable limits in the λI ’s, information about more general class S theories can be found
[30].

We have initiated the study of correlation functions in necklace quiver gauge theories at
large N . Following the method proposed in [10], one computes the corresponding correla-
tors in the matrix models for the theory on S4 and then runs a Gram-Schmidt procedure to
remove the anomalous operator mixtures (whose AdS counterpart would be, per se, very
interesting to elucidate). We have computed all terms in the planar expansion that have
coefficients with linear ζ dependence. As a by-product, we have computed the analogous
quantity in N = 2 SCQCD, extending previous results in the literature. This allowed us
to test the extent to which correlators can be described in terms of N = 4 correlators by
means of an effective coupling. We have shown that there is no universal coupling replace-
ment by which one can express the two-point correlation functions in N = 2 SCQCD in
terms of the N = 4 ones. Since the SCQCD correlation functions arise as a special limit
of the quiver correlation function (upon setting all but one coupling to zero), this result
implies that it is neither possible to express the correlation functions of the quiver gauge
theory in terms of the N = 4 correlation functions with a universal effective coupling.
This is implied by the results in (3.47), (3.42). In particular, note that the SU(2, 1|2)
basis associated with scalars in each vector multiplet used in [21, 22, 23] is just sum and
difference of the Un, Tn. One could also directly choose a basis with two towers of operators
associated each to a vector multiplet, i.e. of the form An ∼ Xn + · · · , Bn ∼ Yn + · · · ;
where the · · · stands for mixing with lower-dimensional operators within the same tower
as well as with lower-dimensional operators of the other tower (that is, in general Xn may
mix with, say, Yn−2). Of course, in the perturbative orbifold case An only contains Xn,
while Bn only contains Yn. Then, upon performing the Gram-Schmidt procedure, as in
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the case of N = 2 SCQCD, one finds that the resulting correlators cannot be expressed in
terms of N = 4 correlation functions with a universal effective coupling.

The perturbative expansion for correlators exhibits an interesting structure. In the
case of N = 2 SCQCD, we found that the observable-dependent effective coupling in
section 3.1.1 satisfies the rather intriguing property (3.21), (3.22), checked for the first few
operators up to n = 8.

In the A1 quiver case, it turns out to be very useful to introduce untwisted and twisted
sector operators. For them, at the perturbative orbifold limit λ1 = λ2 = λ, we find that
their correlators either reproduce the N = 4 result (untwisted sector) or exhibit striking
cancellations in planar loop Feynman diagrams yielding to the conjectured general formula
(3.47) (twisted sector). It would be very interesting to confirm these conjectures and
elucidate the field theory reason for this, maybe along the lines of [31, 32].

From a holographic perspective, the result of the untwisted sector can be argued as
follows. In the description in terms of D3 branes on C3, the orbifold can be taken to act
in the C2 transverse to the C which is associated with the chiral field in the N = 4 theory.
Thus, in this sector, the AdS5 × S5 holographic calculation of [29] for CPO correlators in
the N = 4 theory should also apply to the orbifold case.

In the twisted sector, to the extent we checked, the correlators (3.47) seem to become
“closer” to the N = 4 correlators the larger is the dimension of the operators: two-point
correlators of operators of dimension n differ from the corresponding N = 4 correlators by
O(λ2n) in the weak coupling, planar expansion. This implies the remarkable cancellation
of n−1 loop Feynman diagrams. It would be very interesting to clarify the nature of these
cancellations.

One may wonder what happens away from the perturbative orbifold case. Explicit
computations with the above formulas seem to show no special cancellations. The fact that
only λ1 = λ2 = λ shows cancellations might be connected to the failure of integrability
away from λ1 = λ2 (or the SCQCD limit λ2 = 0) reported in [4].

In this paper we have studied the weak ’t Hooft coupling regime of the necklace theories
at large N . It would be very interesting to explore the strong coupling regime. This can
be done by standard saddle-point techniques and might lead to revealing new tests of
holographic dualities.
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A Notation

In this appendix we compile a description of the notation used in the main text. We are
interested on correlators of CPO’s in R4 for necklace quiver theories. Denoting the scalar
in the vector multiplet of the I’th gauge group as XI,I , we shall consider single-trace chiral
primary operators

XI
n ≡ TrXn

I,I . (A.1)

Correlation functions on R4 will be denoted as 〈·〉. When quoting such correlators, we
will omit their space dependence, |x1 − x2|−n1−n2 , which is, as usual, determined by the
conformal dimensions.

In the associated matrix model for the theory on S4, we can define an analog to XI
n.

However, as discussed in the main text, due to the conformal anomaly, on S4 the XI
n mix

in a non-trivial way, which means that the S4 correlators, denoted by 〈〈XI
nX̄

L
m〉〉, are not

proportional to δn,m. Recall that our 2-point functions are extremal, which means that we
compute 〈XnXn〉. Note however that in S4 the Xn avatar is real, and thus the hermitean
conjugation can be dropped. Inside the S4 correlators 〈〈·〉〉 the inserted operators XI

n are
understood to be those of S4. By the same token, inside the R4 correlator 〈·〉 the inserted
XI
n are understood to be those of R4.

As discussed, in the S4 matrix model the XI
n mix non-trivially. In particular, they mix

with the identity and thus acquire a VEV. It is convenient to introduce VEV-less operators
as

X I
n ≡ XI

n − 〈〈XI
n〉〉 . (A.2)

In particular, the S4 two-point function of the X I
n is just the connected correlator of the

XI
n.

Upon expanding the one-loop determinants we can write the correlators (as well as the
partition function) of interest in terms of quantities of the N = 4 theory, which will be
denoted by a subscript 0. As in (2.9), we introduce the N = 4 quantities

〈〈Xn〉〉0 = Cn(gI) =
1

ZN=4(gI)

∫
dN−1a e

− 8π2

g2
I

∑
a2i
(∑

i

ani

)
,

〈〈XnXm〉〉0 = Cm,n(gI) =
1

ZN=4(gI)

∫
dN−1a e

− 8π2

g2
I

∑
a2i
(∑

i

ami

)(∑
i

ani

)
(A.3)

etc., and their connected counterpart (2.13)

〈〈Xm1 · · ·Xmn〉〉c0 = Cm1,··· ,mn(gI) =
∂

∂hI,m1

· · · ∂

∂hI,mn
F(gI , {hI,A})

∣∣∣
{hI,A=0}

, (A.4)
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with F = − lnZN=4(gI , {hi,A}). The latter deformed partition function for N = 4 is
defined by adding sources for all single-trace chiral primary operators,

ZN=4(gI , {hi,A}) =

∫
dN−1a ∆(a) e

− 8π2

g2
I

∑
i a

2
i+

∑
A=2 hI,A

∑
i a
A
i
. (A.5)

The large N limit is taken as usual at fixed ’ ’t Hooft coupling λI ≡ Ng2
I . A hatˆover

Cm1,··· ,mn will refer to that quantity evaluated at ’t Hooft coupling equal to one. On the
other hand, the superscript I on the N = 4 correlators, i.e. CI

m1,··· ,mn , or the connected
correlator C I

m1,··· ,mn , indicate that they are computed in N = 4 SYM with λI .
In the case of N = 2 SCQCD , since we just have one node, we can drop superscripts I

and call X1,1 ≡ X. In the case of the A1 theory, given that we have only two nodes, for the
sake of clarity in the formulas we define X1,1 ≡ X and X2,2 = Y (and similarly VEV-less
operators X , Y ).

B Large N correlators in N = 4 SYM

Correlators of CPO’s in the large N limit for N = 4 SYM have been computed in [11, 12].
We will make use of the following formulas:

C2r = N
( λ

(2π)2

)r Γ(r + 1
2
)

√
π Γ(r + 2)

; C2r+1 = 0 ; (B.1)

C2n,2r =
( λ

(2π)2

)n+r Γ(n+ 1
2
)Γ(r + 1

2
)

π (n+ r)Γ(n)Γ(r)
;

C2n+1,2r+1 =
( λ

(2π)2

)n+r+1 Γ(n+ 3
2
)Γ(r + 3

2
)

π (n+ r + 1)Γ(n+ 1)Γ(r + 1)
; (B.2)

C2m,2n,2r =
1

N

( λ

(2π)2

)m+n+rΓ(m+ 1
2
)Γ(n+ 1

2
)Γ(r + 1

2
)

π
3
2 Γ(m)Γ(n)Γ(r)

; (B.3)

C2m,2n,2r,2s =
1

N2

( λ

(2π)2

)m+n+r+sΓ(m+ 1
2
)Γ(n+ 1

2
)Γ(r + 1

2
)Γ(s+ 1

2
) (n+m+ r + s− 1)

π2 Γ(m)Γ(n)Γ(r)Γ(s)
.

(B.4)

Note in particular that

Cm1,··· ,mn ∼ N2−n . (B.5)

C The partition function for the A1 theory

In this appendix we give further details on the computation of the partition Starting with
(2.8) and using (2.4), we find function for the A1 case. It is convenient to rename a1

i → ai
and a2

i → bi in (2.2). Starting with (2.8) and using (2.4), we find
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f = −
∑
i,j

∞∑
n=2

(−1)n

n
ζ(2n− 1)

(
(ai − aj)2n + (bi − bj)2n − 2(ai − bj)2n

)
. (C.1)

i.e.

f = −
∞∑
n=2

(−1)n

n
ζ(2n− 1)

2n∑
k=0

(−1)k
(

2n

k

)∑
i

(a2n−k
i − b2n−k

i )
∑
j

(akj − bkj ) . (C.2)

Recall now that ai, bi stand respectively for the eigenvalues of the X1,1 and X2,2 adjoint
scalars in the quiver. In order to ease notation, denoting by X the adjoint scalar of the
first group and by Y the adjoint scalar of the second, this is

f = −
∞∑
n=2

2n∑
k=0

(−1)n+k

n
ζ(2n− 1)

(
2n

k

)
(TrX2n−k − TrY 2n−k)(TrXk − TrY k) (C.3)

Recall now that Z1−loop = ef , which must be inserted in the integral (2.5). Expanding the
exponential ef = 1 + f + · · · , when inserted in (2.5), the “1” will give the product of two
copies of the partition function of the N = 4 theory with the appropriate coupling, that
is, ZN=4(λ1)ZN=4(λ2). Likewise, the linear term in f involves the integrals of

(TrX2n−k − TrY 2n−k)(TrXk − TrY k) (C.4)

In terms of the Cm1···mn defined in (A.3), the integrated linear term with f reads

ZN=4(λ1)ZN=4(λ2)
(
C2n−k,k(λ1)− C2n−k(λ1)Ck(λ2)− C2n−k(λ2)Ck(λ1) + C2n−k,k(λ2)

)
(C.5)

The C’s are easily re-written in terms of the C ’s in appendix B, so that one can check that
the integral of the linear term in f reads (we omit the overall factor ZN=4(λ1)ZN=4(λ2))

C2n−k,k(λ1)+C2n−k(λ1)Ck(λ1)−C2n−k(λ1)Ck(λ2)−C2n−k(λ2)Ck(λ1)+C2n−k,k(λ2)+C2n−k(λ2)Ck(λ2)
(C.6)

The C ’s are given in appendix B in terms of the ’t Hooft coupling. Note in particular that
Cm,n is subleading in N with respect to Cm. Thus, the leading term above is

C2n−k(λ1)Ck(λ1)− C2n−k(λ1)Ck(λ2)− C2n−k(λ2)Ck(λ1) + C2n−k(λ2)Ck(λ2) (C.7)

= [C2n−k(λ1)− C2n−k(λ2)][Ck(λ1)− Ck(λ2)] .

This can be extended to all powers of f , i.e. in the large N limit, and the dominant term in
fn is obtained by replacing the operators TrX2n, TrY 2m by their VEV’s, C2n(λ1), C2m(λ2),
leading to ln f ∼ N2. This gives (2.15), (2.17).
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D Two-point correlators in N = 2 SCQCD

In this appendix we offer the details of the computation of correlators in N = 2 supercon-
formal QCD including all terms linear in ζ(2n−1) as well as the first non-linear term in the
ζ(2n− 1)’s, namely the term with coefficient ζ(3)2. In the case of N = 2 superconformal
QCD, the one-loop contribution to the matrix model is

Z1−loop = e
∑N
i,j=1(lnH(ai−aj)−lnH(ai)−lnH(aj)) . (D.1)

Using (2.4), we can write the exponent as

∑
i,j

(lnH(ai − aj)− lnH(ai)− lnH(aj)) =
N∑

i,j=1

∞∑
q=2

(−1)q
ζ(2q − 1)

q
[a2q
i +a2q

j − (ai−aj)2q] .

(D.2)
Expanding the binomials, and using that, in SU(N),

∑
i ai = 0, we obtain

Z1−loop = e−
∑
i,j

∑∞
q=2

∑2q−2
k=2 (−1)q+k

ζ(2q−1)
q (2q

k )aki a
2q−k
j . (D.3)

The terms which are linear in ζ(2q − 1) are given by

Z1−loop = 1−
N∑

i,j=1

∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
aki a

2q−k
j + ... . (D.4)

where dots stand for the rest of the terms which are product of ζ’s. Thus, we get

Z = Z0

(
1−

∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
Ck,2q−k + ...

)
. (D.5)

Hence, keeping only the linear terms in ζ’s, , we have

〈〈XnXm〉〉 = Cn,m −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)(
Ck,2q−k,n,m − Ck,2q−kCn,m

)
. (D.6)

Likewise

〈〈Xn〉〉 = Cn −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)(
Ck,2q−k,n − Ck,2q−kCn

)
. (D.7)

Combining these two formulas, we obtain, for the connected correlator,

〈〈XnXm〉〉 = Cn,m −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
M

(1)
k,q,n,m , (D.8)
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where

M
(1)
k,q,n,m = Ck,2q−k,n,m −Ck,2q−kCn,m −Ck,2q−k,nCm −Ck,2q−k,mCn + 2Ck,2q−kCnCm . (D.9)

In terms of connected correlators this reads

M
(1)
k,q,n,m = Ck,2q−k,n,m + Ck,n,mC2q−k + C2q−k,n,mCk + Ck,n C2q−k,m + C2q−k,nCk,m . (D.10)

Recalling that Ck,m = O(1) and Ck = O(N), to leading order in N we finally obtain

M
(1)
k,q,n,m = Ck,n,mC2q−k + C2q−k,n,mCk + Ck,nC2q−k,m + C2q−k,nCk,m . (D.11)

We can easily extend the above computation to include the first non-linear term in
the ζ’s, namely the one proportional to ζ(3)2. Note that in the expansion of the one-loop
factor we have

Z1−loop = 1−
N∑

i,j=1

∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
aki a

2q−k
j +

9

2
ζ(3)2(

N∑
i=1

a2
i )

4 + · · · (D.12)

Therefore (we omit dots “· · · ” in what follows)

Z = Z0

(
1−

∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
Ck,2q−k +

9

2
ζ(3)2C2,2,2,2

)
. (D.13)

In addition,

〈〈XnXm〉〉 = Cn,m −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)(
Ck,2q−k,n,m − Ck,2q−kCn,m

)
+

9

2
ζ(3)2(C2,2,2,2,n,m − C2,2,2,2Cn,m + 2C2,2C2,2Cn,m − 2C2,2C2,2,n,m)

)
,

(D.14)

and

〈〈Xn〉〉 = Cn −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)(
Ck,2q−k,n − Ck,2q−kCn

)
+

9

2
ζ(3)2

(
C2,2,2,2,n + 2C2,2C2,2Cn − C2,2,2,2Cn − 2C2,2C2,2,n

)
. (D.15)
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Combining these expressions, we obtain the following formula for the connected correlator
including the ζ(3)2 order:

〈〈XnXm〉〉 = Cn,m −
∞∑
q=2

2q−2∑
k=2

(−1)q+k
ζ(2q − 1)

q

(
2q

k

)
M

(1)
k,q,n,m +

9

2
ζ(3)2M

(2)
k,q,n,m , (D.16)

where

M
(2)
k,q,n,m = C2,2,2,2,n,m − 2C2,2,mC2,2,n − 2C2,2C2,2,n,m − C2,2,2,2,nCm − C2,2,2,2,mCn

+4C2,2C2,2,nCm + 4C2,2C2,2,mCn − 6C2,2C2,2CnCm + 2C2,2,2,2CmCn

+2C2,2C2,2Cn,m − C2,2,2,2Cn,m . (D.17)

In terms of connected correlators we have

M
(2)
k,q,n,m = C2,2,2,2,n,m + 4C2C2,2,2,n,m + 4C2,2,nC2,2,m + 4C2C2C2,2,n,m + 4C2,2C2,2,n,m

+4C2,2,2,nC2,m + 4C2,2,2,mC2,n + 4C2,2,2C2,n,m + 8C2C2,2,nC2,m + 8C2C2,2,mC2,n

+8C2,2C2,mC2,n + 8C2C2,2C2,n,m . (D.18)

Thus, the leading term in the 1/N expansion in M (2) is given by

M
(2)
k,q,n,m = 4C2C2C2,2,n,m + 8C2C2,2,nC2,m + 8C2C2,2,mC2,n + 8C2,2C2,mC2,n + 8C2C2,2C2,n,m .

(D.19)

E Two-point correlators in quiver gauge theories

In this appendix we describe the computation of correlators in quiver gauge theories in-
cluding all terms linear in the ζ’s.

E.1 General quiver

Expanding the one-loop factor (2.24) in powers of X and keeping only the linear term in
the ζ’s , we obtain

Z1−loop = 1−
n∑
I=1

∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
TrX2q−k

I,I TrXk
I,I − TrX2q−k

I,I TrXk
I+1,I+1

)
.

(E.1)
From here, it follows immediately

31



Z = 1−
n∑
I=1

∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
CI

2q−k,k − CI
2q−kC

I+1
k

)
. (E.2)

where a superscript I will refer to the corresponding quantity computed in a copy of the
S4 matrix model with coupling λI . In the following we will use a simplified notation in
which XI

k ≡ TrXk
I,I . In this notation, for instance

Z1−loop = 1−
n∑
I=1

∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
XI

2q−kX
I
k −XI

2q−kX
I+1
k

)
. (E.3)

Let us start by considering the connected correlator 〈〈X L
n X L

m 〉〉. After a straightfor-
ward but rather tedious computation one finds

〈〈XL
nX

L
m〉〉 = CL

n,m −
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
ALq,k,n,m −

∑
I 6=L,L−1

BL,I
q,k,n,m

)
; (E.4)

where

ALq,k,n,m = (CL
2q−k,k,n,m−CL

2q−k,kC
L
n,m−CL+1

k CL
2q−k,n,m−CL−1

2q−kC
L
k,n,m+CL

2q−kC
L+1
k CL

n,m+CL−1
2q−kC

L
k C

L
n,m) ,

(E.5)
and

BL,I
q,k,n,m = (CI

2q−kC
I+1
k CL

n,m − CI
2q−k,kC

L
n,m + CI

2q−k,kC
L
n,m − CI

2q−kC
I+1
k CL

n,m

)
(E.6)

. Likewise

〈〈XL
n 〉〉 = CL

n −
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
EL
q,k,n −

∑
I 6=L,L−1

FL,I
q,k,n

)
; (E.7)

where now

EL
q,k,n = (CL

2q−k,k,n−CL
2q−k,kC

L
n −CL+1

k CL
2q−k,n−CL−1

2q−kC
L
k,n +CL

2q−kC
L+1
k CL

n +CL−1
2q−kC

L
k C

L
n ) ,

(E.8)
and

FL,I
q,k,n = (CI

2q−kC
I+1
k CL

n − CI
2q−k,kC

L
n + CI

2q−k,kC
L
n − CI

2q−kC
I+1
k CL

n

)
. (E.9)
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Combining these expressions and writing the result in terms of connected correlators, we
obtain

〈〈X L
n X L

m 〉〉 = C L
n,m −

∞∑
q=2

2q∑
j=0

(−1)q+j

q
ζ(2q − 1)

(
2q

j

)
M

(1)
q,j,n,m (E.10)

+
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
C L+1
k C L

2q−k,n,m + C L−1
2q−kC

L
k,n,m

)
,

where M
(1)
q,k,n,m is given in (D.11). The first line is nothing but theN = 2 SCQCD correlator

with coupling λL. In the second line, only even k contributes, since C L
2n+1 = 0. Thus we

find

〈〈X L
n X L

m 〉〉 = 〈〈X L
n X L

m 〉〉SCQCD(λL)

+
∞∑
q=2

q−1∑
k=1

(−1)q

q
ζ(2q − 1)

(
2q

2k

)(
C L+1

2k C L
2q−2k,n,m + C L−1

2q−2kC
L
2k,n,m

)
.(E.11)

Now consider 〈〈X L
n X L+1

m 〉〉. A similar computation yields to

〈〈XL
nX

L+1
m 〉〉 = CL

nC
L+1
m −

∞∑
q=2

2q∑
k=0

(−1)q+k

n
ζ(2n− 1)

(
2q

k

)
GL
q,k,n,m

with

GL
q,k,n,m = CL

2q−k,k,nC
L+1
m + CL+1

2q−k,k,mC
L
n − CL

2q−k,nC
L+1
k,m − C

L+1
2q−k,mC

L+2
k CL

n − CL
k,nC

L+1
m CL−1

2q−k

+CL−1
2n−k,kC

L
nC

L+1
m − CL

nC
L+1
m

(
CL

2q−k,k − CL
2q−kC

L+1
k + CL−1

2q−k,k − C
L−1
2q−kC

L
k + CL+1

2q−k,k

−CL+1
2q−kC

L+2
k

)
,

and

〈〈XL
n 〉〉 = CL

n −
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)
HL
q,k,n , (E.12)

with

HL
q,k,n = CL

2q−k,k,n + CL+1
2q−k,kC

L
n − CL+1

k CL
2q−k,n − CL

2q−k,kC
L
n + CL

2q−kC
L+1
k CL

n − CL+1
2q−k,kC

L
n

+CL−1
2q−k,kC

L
n − CL

k,nC
L−1
2q−k − C

L−1
2q−k,kC

L
n + CL−1

2q−kC
L
k C

L
n + CL+1

2q−kC
L+2
k CL

n − CL+1
2q−kC

L+2
k CL

n ,

(E.13)
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Using the above formulas, we finally find

〈〈X L
n X L+1

m 〉〉 =
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)
C L+1
m,k C L

2q−k,n . (E.14)

Note that the case when one of the integers in Ĉn,m vanishes is excluded. Thus, we could
really restrict the sum in k from 1 to 2q − 1.

It remains to consider the correlator 〈〈X L
n X M

m 〉〉 with |L−M | > 1. A straightforward
but long computation gives

〈〈X L
n X M

m 〉〉 =
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q−1)

(
2q

k

)[
JL,Mq,k,n,m− (KL,M

q,k,nC
M
m +KM,L

q,k,mC
L
n )
]
, (E.15)

where

JL,Mq,k,n,m = −CL
2q−k,k,nC

M
m − CM

2q−k,k,mC
L
n − CL−1

2q−k,kC
L
nC

M
m − CM−1

2q−k,kC
L
nC

M
m + CL

2q−k,nC
L+1
k CM

m

+CL
k,nC

M
m C

L−1
2q−k + CM

2q−k,mC
M+1
k CL

n + CM
k,mC

L
nC

M−1
2q−k + CL

nC
M
m

(
CL

2q−k,k − CL
2q−kC

L+1
k

+CL−1
2q−k,k − C

L−1
2q−kC

L
k + CM

2q−k,k − CM
2q−kC

M+1
k + CM−1

2q−k,k − C
M−1
2q−kC

M
k

)
,

(E.16)

and

KL,M
q,k,n = −CL

2q−k,k,n − CM
2q−k,kC

L
n − CL−1

2q−k,kC
L
n − CM−1

2q−k,kC
L
n + CL

2q−k,nC
L+1
k + CL

k,nC
L−1
2q−k

+CM
2q−kC

M+1
k CL

n + CM
k C

L
nC

M−1
2q−k + CL

n

(
CL

2q−k,k − CL
2q−kC

L+1
k + CL−1

2q−k,k − C
L−1
2q−kC

L
k

+CM
2q−k,k − CM

2q−kC
M+1
k + CM−1

2q−k,k − C
M−1
2q−kC

M
k

)
.

(E.17)

Thus, we see that this exactly vanishes, and hence

〈〈X L
n X M

m 〉〉 = 0 . (E.18)

E.2 The A1 quiver

Note that the A1 case is slightly special, as the two nearest neighbours to one node are the
same: the other node. In this case the computation of the mixed correlator must be done
ab initio. We find
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〈〈XnYm〉〉 = CX
n C

Y
m −

∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)
AX,Yq,k,n,m , (E.19)

with

AX,Yq,k,n,m = CX
2q−k,k,nC

Y
m + CY

2q−k,k,mC
X
n − CX

2q−k,nC
Y
k,m − CY

2q−k,mC
X
k,n − CX

n C
Y
m

(
CX

2q−k,k + CY
2q−k,k

−CX
2q−kC

Y
k − CY

2q−kC
X
k

)
.

(E.20)

Likewise, we obtain for 〈〈Xn〉〉,

〈〈Xn〉〉 = CX
n −

∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)
EX,Y
q,k,n , (E.21)

with

EX,Y
q,k,n = CX

2q−k,k,n + CY
2q−k,kC

X
n − CX

2q−k,nC
Y
k − CY

2q−kC
X
k,n − CX

n

(
CX

2q−k,k + CY
2q−k,k

−CX
2q−kC

Y
k − CY

2q−kC
X
k

)
.

(E.22)

and similarly for 〈〈Ym〉〉. Combining these equations, one finally finds

〈〈XnYm〉〉 = −
∞∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)
[AX,Yq,k,n,m − (EX,Y

q,k,nC
Y
m + EY,X

q,k,mC
X
n )] ; (E.23)

which gives

〈〈XnYm〉〉 =
∑
q=2

2q∑
k=0

(−1)q+k

q
ζ(2q − 1)

(
2q

k

)(
CX

2q−k,nC
Y
k,m + C Y

2q−k,mCX
k,n

)
. (E.24)
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