Datos del Documento


Por favor, use este identificador para citar o enlazar este documento: https://ria.asturias.es/RIA/handle/123456789/7001
Título : Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels
Autor : Garcés, Diego
Díaz, Eva
Ordóñez, Salvador
Sastre, Herminio
González-La Fuente, José Manuel
Palabras clave : SRF
Poder calorífico
Residuos
Fecha de publicación : ene-2016
Editorial : Elsevier
Citación : Garcés D, Díaz E, Ordóñez S, Sastre H, González-La Fuente J.M. Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels.Waste Management. 2016; 47(part B): 164-173.
Resumen : Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg−1 and 42 MJ kg−1. One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg−1, followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer–Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content.
URI : https://ria.asturias.es/RIA/handle/123456789/7001
Aparece en las colecciones: Ingeniería

Archivos en este documento:
Fichero Tamaño Formato  
Archivo.pdf468.14 kBAdobe PDFVer/Abrir
Mostrar el registro Completo


Ver estadísticas del documento


Este documento está sujeto a una licencia Creative Commons: Licencia Creative Commons Creative Commons