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Abstract—The holdover phase (i.e., the time between 

lightning-induced ignition and fire detection) is a phenomenon 

characteristic of lightning-caused wildfires. In this paper, we 

analyzed multiple holdover time datasets to determine the best 

statistical distribution for this phenomenon. We found that the 

gamma distribution seems a suitable candidate to model 

holdover times. We propose applications of the gamma 

distribution to improve the investigation of lightning-caused 

wildfires. 
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I. INTRODUCTION 

Some wildfires ignited by lightning present an initial latent 
phase characterized by smoldering (i.e., burning slowly with 
smoke but no flame) of the soil organic matter before turning 
into detectable surface fires [1]. Since the presence and 
duration of this latent (holdover) phase is usually unknown, 
holdover duration is commonly defined, for practical reasons, 
as the time between lightning-induced fire ignition and fire 
detection [2, 3]. The goal of this study is to find a suitable 
probability distribution that characterizes holdover times of 
lightning-caused wildfires. For that purpose, we address the 
following specific objectives: 

• What probability distribution fits best empirical 
estimations of holdover time? 

• How variable are the probability distributions of 
holdover fitted with data from different studies? 

• Does size interval of frequency distributions 
obtained from empirical estimations of holdover times affect 
the probability distributions? 

II. BACKGROUND 

Our current knowledge on the holdover phenomenon is 
still limited. Holdover durations can range from a few minutes 
[4], to occasionally some weeks and even months [5]. It is 
commonly accepted that the majority of lightning fires have 
short holdover times (less than 24 hours), and that holdover 
distributions present a right-skewed distribution with an 
exponential decay [2, 3, 6]. While some lightning fires may 
start propagating right after ignition (i.e., no smouldering) [7], 
other fires may extinguish during the latent phase before being 
reported [2, 3]. 

The holdover phenomenon is one of the major challenges 
to study lightning-caused wildfires [8, 9], and the reasons are 
manifold. First, holdover time is supposed to vary across 
regions. Lightning fires have only been studied in a few 
regions and it is uncertain how findings from a few studies 
may be valid in other parts of the globe [10]. Second, the 
drivers of holdover fires are not yet well understood [4]. The 
durations of holdover fires are rarely examined in detail, 

although recent studies focused on the holdover phenomenon 
and its causes [11]. Third, approaches to estimate the holdover 
duration are variable. Until lightning data from Lightning 
Location Systems (LLS) became widely available, holdover 
durations were estimated from the elapsed time between fire 
discovery and the most recent lightning storm over the area of 
the wildfire [12]. Nowadays, the methods to estimate holdover 
times are mainly based on identifying the most likely igniting 
lightning (from a lightning dataset) [6]. Several 
methodologies are used, although a spatio-temporal index of 
proximity has become the most common method to find 
igniting lightning, and consequently derive holdover times [4, 
6, 11, 13]. However, current methods do not take into 
consideration the temporal distribution of holdover fires, and 
holdover time estimations can vary depending on the method 
and parameters applied [6]. 

III. DATA 

We used a global database of holdover times of lightning 
fires [10]. On May 1 2022, the database included 34 frequency 
distributions of holdover times (Table I). The holdover 
datasets contained 2051 records, collected from 26 
publications, with more than 102,552 lightning fires 
distributed across 12 countries in four continents from 1921 to 
2020. Each holdover frequency distribution contains several 
records with the number or proportion of lightning fires in a 
specific time interval. Therefore, the database contains 
interval-censored data exclusively. For example, the amount 
of fires with a holdover time shorter than 24 hours (i.e., the 
lightning fires detected during the first day), the number of 
fires with a holdover time between 24 and 48 hours, and so on 
(Fig. 1). The duration of the time intervals is variable among 
studies, although most of the holdover frequency distributions 
report the number of lightning fires in days or hours. 

 

Fig. 1. Example of a frequency distribution from the global database of 
holdover times of lightning fires [10]. 
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TABLE I.  DATASETS OF HOLDOVER TIME ANALYZED IN 

THIS PAPER. 

Study id Study area Period n fires n records Rel. 

CON2006CH01 Ticino (CH) 1981-2004 156 7 2 

CON2006IT01 Aosta Valley (IT) 2003-2003 29 6 1 

KOU1967CA01 Canada 1960-1963 3615 16 2 

NAS1996CA01 
Alberta and 
Saskatchewan (CA) 1988-1993 2551 15 3 

WOT2005CA01 Ontario (CA) 1992-2001 5169 28 3 

SCH2019US01 United States 2012-2015 797 15 3 

MAC2019US01 

Western United 

States 2017 95 11 1 

DOW2009AU01 Victoria (AU) 2000-2009 1797 4 3 

PIN2014ES01 Catalonia (ES) 2004-2009 464 24 3 

PIN2017ES01 Catalonia (ES) 2009-2014 357 19 3 

GIS1926US01 
Northern Rocky 
Mountains (US) 1924-1925 1933 11 2 

GIS1931US01 
Northern Rocky 
Mountains (US) 1924-1928 4149 11 2 

BAR1951US01 
Northern Rocky 
Mountains (US) 1931-1945 16368 13 2 

TAY1969US01 
Northern Rocky 
Mountains (US) 1950-1965 14489 4 2 

SHO1923US01 California (US) 1921   6 1 

SHO1930US01 California (US) 1921-1922 443 6 2 

BAR1978US01 
Arizona and New 
Mexico (US) 1960-1974 28377 8 2 

MOR1948US01 
Oregon and 
Washington (US) 1940-1944 5357 28 2 

DUN2010US01 Florida (US) 1986-2003 230 2 1 

LAR2005FI01 Finland 1996-2002 106 5 1 

MUL2021AT01 Austria 2013-2020 303 10 3 

MOR2020IT01 Aosta Valley (IT) 2012-2018 32 150 1 

MOR2020CH01 Switzerland 2001-2018 263 238 3 

PER2021GR01 Greece 2017-2019 914 95 1 

PER2021FR01 
Mediterranean 
France 2012-2015 36 242 1 

PER2021PT01 Portugal 2009-2015 309 93 3 

PER2021ES01 Spain 2009-2015 2702 336 3 

HES2022US01 Alaska (US) 2001-2012 402 5 1 

HES2022US02 Alaska (US) 2012-2018 287 5 1 

HES2022CA01 
Northwest 
Territories (CA) 2001-2018 550 5 1 

MEN2022BR01 Pantanal (BR) 2012-2017 265 65 1 

PER2022US01 
Arizona and New 
Mexico (US) 2009-2013 6301 168 3 

PER2022US02 Florida (US) 2009-2013 2693 167 3 

PIN2022ES01 Catalonia (ES) 2003-2020 1013 233 3 

n = number; Rel. = reliability class. 

IV. METHODS 

Before fitting probability distribution to the datasets, we 
assigned a “reliability class” to each empirical holdover 
distribution. The lowest reliability (class 1) was given to 
studies (i) with < 150 fires, (ii) or < 4 records, (iii) or those 
with a frequency of holdover fires in the second day similar or 
higher than the frequency in the first day (in total 12 studies; 
Table I). For the rest of the studies, the highest reliability 
(class 3) was given to those that estimated holdover times 
using lightning data from LLS (13 studies), and class 2 to the 
remaining ones (9 studies). 

We explored the holdover time datasets to search for 
distributions that could fit the histograms. We selected eight 
candidate distributions (exponential, chi-squared, log-normal, 
log-logistic, F, gamma, Weibull, and Pareto) that satisfied the 
following requirements: (i) to have one or two parameters; (ii) 
to be a positive continuous distribution; and (iii) to have 
positive skewness and long tail. We used the function 
“fitdistcens” from the R package “fitdistrplus” to fit, by 
maximum likelihood, the eight probability distributions to 
each of the 34 datasets [14]. We applied Akaike and Bayesian 
Information Criteria (AIC and BIC) to select the best 
distribution among those fitted to each dataset, and goodness-

of-fit plots to compare empirical data and fitted 
distributions (Fig. 2). 

 

Fig. 2. Example of CDF of three distributions plotted against the empirical 
cumulative frequency (grey rectangles). 

Given the good fit of gamma distributions, we decided to use 
this distribution in the rest of the analyses. First, we chose 
several variables, such as the two parameters that define the 
gamma distribution (shape and rate), to calculate basic 
statistics for the fitted gamma distributions. Second, we 
compared gamma distributions fitted with continuous 
holdover times (i.e., non-censored data) from nine different 
studies, against gamma distributions fitted with interval-
censored data (i.e., hourly and daily histograms of holdover). 

V. RESULTS 

Overall, the gamma distribution had lower AIC and BIC 
values than the rest of the distributions, and the gamma 
distributions were selected as the best fit more frequently with 
increasing reliability of the holdover time datasets (Table II). 
In addition, the 34 fitted gamma distributions (Table III) 
showed a high variability in their parameters (shape and rate), 
mean and median holdover times, as well as the percent of 
fires detected within the first 24 hours after ignition (CDF day 
1; Table IV). 

We observed that the intervals used to censor the holdover 
data seem to influence the fit of the gamma distributions 
(Table V), although this influence is relatively limited on the 
probabilities (Fig. 3). In general, in gamma distributions with 
shape and rate < 1 (i.e., mode = 0), increasing the time interval 
seems to concentrate more mass of the distributions on the left 
of the figure, although this trend did not occur in all the nine 
datasets. On the other hand, in gamma distributions with shape 
and rate > 1 (i.e., mode > 0), the trend was the opposite (more 
mass on the right of the figure). 

TABLE II.  NUMBER AND PERCENT (IN PARENTHESES) OF 

DISTRIBUTIONS SELECTED AS THE BEST FIT ACCORDING TO 

AIC. 

Distribution Reliability 1-2-3 Reliability 2-3 Reliability 3 

Gamma 14  (41.2) 12  (54.5) 9  (69.2) 

Weibull 6  (17.6) 2  (9.1) 1  (7.7) 

Log-logistic 3  (8.8) 3  (13.6) 0  (0.0) 

Chi-squared 3  (8.8) 2  (9.1) 2  (15.4) 

Exponential 3  (8.8) 0  (0.0) 0  (0.0) 

Pareto 2  (5.9) 1  (4.5) 1  (7.7) 

Log-normal 2  (5.9) 1  (4.5) 0  (0.0) 

F 1  (2.9) 1  (4.5) 0  (0.0) 

TOTAL 34  (100) 22  (100) 13  (100) 
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TABLE III.  FITTED GAMMA DISTRIBUTIONS. 

Study id Shape Rate r mean (h) median (h) CDF d 1 (%) 

CON2006CH01 0.570 0.821 0.989 16.7 8.4 76.7 

CON2006IT01 0.804 0.719 0.991 26.8 16.8 61.1 

KOU1967CA01 0.489 0.361 0.994 32.5 14.5 61.3 

NAS1996CA01 0.507 0.206 0.994 59.1 27.2 47.3 

WOT2005CA01 0.631 0.179 0.996 84.5 46.0 35.2 

SCH2019US01 0.272 0.193 0.998 33.8 7.0 68.1 

MAC2019US01 1.032 0.345 0.992 71.8 50.4 27.7 

DOW2009AU01 0.145 0.030 0.996 115.3 4.2 64.2 

PIN2014ES01 0.341 0.971 0.984 8.4 2.5 89.7 

PIN2017ES01 0.315 0.690 0.991 10.9 2.9 85.7 

GIS1926US01 0.596 1.206 0.989 11.9 6.2 84.8 

GIS1931US01 0.512 0.994 0.983 12.4 5.7 83.7 

BAR1951US01 0.295 0.352 0.997 20.1 4.8 75.8 

TAY1969US01 0.341 0.360 0.980 22.7 6.7 72.6 

SHO1923US01 0.398 0.322 0.977 29.7 10.7 65.8 

SHO1930US01 0.345 0.277 0.989 29.8 9.0 67.3 

BAR1978US01 0.386 0.920 0.972 10.1 3.5 87.2 

MOR1948US01 0.269 0.240 0.986 26.9 5.4 71.8 

DUN2010US01 1.047 0.766 1.000 32.8 23.1 51.3 

LAR2005FI01 0.945 0.478 0.977 47.5 32.1 40.7 

MUL2021AT01 0.376 0.306 0.995 29.5 9.9 66.5 

MOR2020IT01 0.533 0.479 0.972 26.7 12.8 65.1 

MOR2020CH01 0.383 0.299 0.997 30.7 10.6 65.5 

PER2021GR01 1.172 0.831 0.988 33.8 24.8 48.7 

PER2021FR01 0.276 0.178 0.956 37.2 7.9 66.4 

PER2021PT01 0.560 0.585 0.987 23.0 11.5 68.5 

PER2021ES01 0.214 0.136 0.990 37.8 4.7 69.7 

HES2022US01 2.374 1.277 0.996 44.6 38.5 26.1 

HES2022US02 2.442 1.404 0.998 41.7 36.2 28.5 

HES2022CA01 2.398 1.112 0.992 51.8 44.8 20.4 

MEN2022BR01 1.645 1.688 0.990 23.4 18.9 61.6 

PER2022US01 0.456 0.528 0.992 20.7 8.7 72.4 

PER2022US02 0.333 0.373 0.983 21.5 6.1 73.8 

PIN2022ES01 0.226 0.385 0.989 14.1 2.0 82.7 

r = Pearson correlation coefficient between empirical and theoretical CDF values; CDF 1 d = 
cumulative probability of day 1. 

TABLE IV.  SUMMARY OF FITTED GAMMA DISTRIBUTIONS. 

Variable Mean Median SD CV (%) Min Max 

Shape 0.695 0.473 0.626 90.1 0.145 2.442 

Rate 0.589 0.431 0.410 69.6 0.030 1.688 

Mean (h) 33.5 29.6 22.3 66.5 8.4 115.3 

Median (h) 15.4 9.4 13.9 90.1 2.0 50.4 

CDF 1 d (%) 62.8 66.4 18.6 29.7 20.4 89.7 

CDF 1 d = cumulative probability of day 1; SD = standard deviation; CV = coefficient of variation; 
Min = minimum; Max = maximum. 

 

Fig. 3. Example of CDF of gamma distributions fitted with interval-
censored (daily and hourly) and non-censored (continuous) holdover data. 

VI. DISCUSSION 

Our results show that gamma is a suitable probability 
distribution to describe holdover times. This is not surprising 
since gamma distributions are used to predict waiting times, 
based on the Poisson process, and that the exponential 
distribution is just a special case of the gamma distribution. 
The large variability among holdover datasets resulted in 
important differences between fitted gamma distributions. 
Although part of the variability may be due to ecological 
factors, (e.g., climate and dominant vegetation), we suspect 
that methodological aspects, such as the method used to derive 
holdover times and the maximum holdover considered, may 
influence the distributions of holdover data. 

The gamma distribution has several strengths. (i) It is a 
simple distribution, with only two parameters, that allows for 
different shapes and rates of change. (ii) The probabilities 
follow a non-linear model, which fits the empirical 
distribution of holdover time (Fig. 4). (iii) Setting a maximum 
holdover time is not strictly necessary when using a gamma 
distribution, while current methods to study lightning fires 
require a temporal threshold to avoid wrong matches between 
lightning and wildfires by pure chance [2, 6]. 

 

TABLE V.  GAMMA DISTRIBUTIONS FITTED WITH CONTINUOUS, HOURLY AND DAILY HOLDOVER DATA. 

Holdover 

data Variable MOR2020IT01 MOR2020CH01 PER2021FR01 PER2021PT01 PER2021ES01 MEN2022BR01 PER2022US01 PER2022US02 PIN2022ES01 

Continuous 

Shape 0.575 0.454 0.363 0.609 0.285 1.547 0.524 0.489 0.334 

Rate 0.517 0.355 0.234 0.635 0.181 1.590 0.605 0.546 0.565 

Mean (h) 26.7 30.7 37.3 23.0 37.8 23.4 20.8 21.5 14.2 

Median (h) 13.6 12.7 12.0 12.2 8.5 18.6 9.8 9.6 4.1 

CDF 1 d (%) 64.3 63.5 62.4 67.9 65.6 62.0 71.5 71.1 81.3 

Hourly 

Shape 0.533 0.383 0.276 0.560 0.214 1.645 0.456 0.333 0.226 

Rate 0.479 0.299 0.178 0.585 0.136 1.688 0.528 0.373 0.385 

Mean (h) 26.7 30.7 37.2 23.0 37.8 23.4 20.7 21.5 14.1 

Median (h) 12.8 10.6 7.9 11.5 4.7 18.9 8.7 6.1 2.0 

CDF 1 d (%) 65.1 65.5 66.4 68.5 69.7 61.6 72.4 73.8 82.7 

Daily 

Shape 0.303 0.469 0.160 1.075 0.181 3.145 0.373 0.396 0.210 

Rate 0.285 0.364 0.109 1.085 0.120 3.251 0.481 0.479 0.401 

Mean (h) 25.4 30.9 35.2 23.8 36.3 23.2 18.6 19.9 12.6 

Median (h) 6.3 13.2 1.9 17.0 2.8 20.8 6.2 7.1 1.5 

CDF 1 d (%) 71.6 63.0 74.3 63.1 72.4 59.8 75.8 74.2 84.5 

CDF 1 d = cumulative probability of day 1. 

 

What gamma distribution to use to model probabilities of 
reaching holdover times? The answer is not trivial given the 
multiple options to consolidate multiple datasets and 
distributions [15]. Table VI shows four gamma distributions 

obtained by combining holdover datasets (Table I) and gamma 
distributions (Table III). In the 1st consolidation method, all 34 
datasets were pooled before fitting a gamma distribution, 
while in the 2nd method, the holdover data were pooled using 
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relative frequencies to avoid giving more weight to studies 
with more fires. The 3rd method averaged the probability 
density functions (PDF) of all 34 gamma distributions. 
Similarly to the 3rd method, the 4th method used the reliability 
class to obtain a weighted average density. The four gamma 
distributions from Table VI must be considered as preliminary 
before the consolidation methods are explored further. 

Gamma distributions can be used to model the holdover 
phenomenon, although further examinations are needed to test 
if these distributions improve the current methods that link 
lightning and wildfire data [6, 13]. Likewise, gamma 
distributions may be combined with more sophisticated 
methods, based on spatial error data from LLS, to add a 
temporal dimension to the calculation of probabilities of 
lightning striking the reported ignition areas [16]. 

 

Fig. 4. Probability of a lightning fire reaching a certain holdover time 
according to a gamma distribution against the linear approach used in the 
temporal component of the index of proximity according to [13]. 

TABLE VI.  FITTED GAMMA DISTRIBUTIONS AFTER 

DIFFERENT METHODS OF CONSOLIDATION. 

Variable Method 1 Method 2 Method 3 Method 4 

Shape 0.313 0.392 0.379 0.331 

Rate 0.302 0.297 0.271 0.238 

Mean (h) 24.9 31.7 33.5 33.3 

Median (h) 6.5 11.2 11.4 9.4 

CDF 1 d (%) 71.7 64.6 63.9 65.8 

CDF 1 d = cumulative probability of day 1; consolidations methods: 1 - pool data, 2 - pool data 
equally, 3 - average density, 4 - weighted average density. 

VII. CONCLUSIONS 

The holdover phenomenon is one of the most challenging 
aspects of lightning fires. Using a global database of holdover 
time of lightning fires, this study shows that the gamma 
distribution is a likely candidate to model holdover durations 
(i.e., the time from lightning-induced ignition to fire 
detection). Gamma distributions could be applied to improve 
the calculation of probabilities used to investigate igniting 
lightning and lightning-caused fires. 
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