List of references
Study_id |
Citation |
DOI |
CON2006CH01 |
Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F. 2006. Lightning-induced fires in the alpine region: an increasing problem. Presented at the V International Conference on Forest Fire Research, Coimbra, Portugal, 9 pp. |
|
CON2006IT01 |
Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F. 2006. Lightning-induced fires in the alpine region: an increasing problem. Presented at the V International Conference on Forest Fire Research, Coimbra, Portugal, 9 pp. |
|
KOU1967CA01 |
Kourtz P. 1967. Lightning behaviour and lightning fires in Canadian forests. Department of Forestry and Rural Development, Publication No. 1179, Ottawa, Canada, 37 pp. |
|
NAS1996CA01 |
Nash CH, Johnson EA. 1996. Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Canadian Journal of Forest Research 26: 1859-1874. |
https://doi.org/10.1139/x26-211 |
WOT2005CA01 |
Wotton BM, Martell DL. 2005. A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research 35: 1389-1401. |
https://doi.org/10.1139/x05-071 |
SCH2019US01 |
Schultz CJ, Nauslar NJ, Wachter JB, Hain CR, Bell JR. 2019. Spatial, temporal and electrical characteristics of lightning in reported lightning-initiated wildfire events. Fire 2: 18. |
https://doi.org/10.3390/fire2020018 |
MAC2019US01 |
MacNamara BR. 2019. Flash characteristics and precipitation metrics of western U.S. lightning-initiated wildfires. MSc Thesis, Florida State University, USA, 74 pp. |
|
DOW2009AU01 |
Dowdy AJ, Mills GA. 2009. Atmospheric states associated with the ignition of lightning-attributed fires. Centre for Australian Weather and Climate Research, Technical Report No. 019, Melbourne, Australia, 42 pp. |
|
PIN2014ES01 |
Pineda N, Montanyà J, van der Velde OA. 2014. Characteristics of lightning related to wildfire ignitions in Catalonia. Atmospheric Research 135-136: 380-387. |
https://doi.org/10.1016/j.atmosres.2012.07.011 |
PIN2017ES01 |
Pineda N, Rigo T. 2017. The rainfall factor in lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology 239: 249-263. |
https://doi.org/10.1016/j.agrformet.2017.03.016 |
GIS1926US01 |
Gisbone HT. 1926. Lightning and forest fires in the northern Rocky Mountain region. Monthly Weather Review 54: 281-286. |
https://doi.org/10.1175/1520-0493(1926)54<281:LAFFIT>2.0.CO;2 |
GIS1931US01 |
Gisbone HT. 1931. A five-year record of lightning storms and forest fires. Monthly Weather Review 59: 139-150. |
https://doi.org/10.1175/1520-0493(1931)59<139:AFROLS>2.0.CO;2 |
BAR1951US01 |
Barrows JS. 1951. Forest fires in the Northern Rocky Mountains. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Research Paper RM-28, Missoula, USA, 252 pp. |
|
TAY1969US01 |
Taylor AR. 1969. Lightning effects on the forest complex. Proceedings of the 9th Tall Timbers Fire Ecology Conference, Tallahassee, USA: 127-150. |
|
SHO1923US01 |
Show SB, Kotok EI. 1923. The occurrence of lightning storms in relation to forest fires in California. Monthly Weather Review 51: 175-180. |
https://doi.org/10.1175/1520-0493(1923)51<175:TOOLSI>2.0.CO;2 |
SHO1930US01 |
Show SB, Kotok EI. 1930. The determination of hour control for adequate fire protection in the major cover types of the California Pine Region. USDA, Technical Bulletin No. 209, Washington D.C., USA, 47 pp. |
|
BAR1978US01 |
Barrows JS. 1978. Lightning fires in Southwestern forests. Final Report for Northern Forest Fire Laboratory, Missoula, USA, 167 pp. |
|
MOR1948US01 |
Morris WG. 1948. Lightning fire discovery time on National Forests in Oregon and Washington. Fire Control Notes 9 (4): 1-5. |
|
DUN2010US01 |
Duncan BW, Adrian FW, Stolen ED. 2010. Isolating the lightning ignition regime from a contemporary background fire regime in east-central Florida, USA. Canadian Journal of Forest Research 40: 286-297. |
https://doi.org/10.1139/X09-193 |
LAR2005FI01 |
Larjavaara M, Pennanen J, Tuomi TJ. 2005. Lightning that ignites forest fires in Finland. Agricultural and Forest Meteorology 132: 171-180. |
https://doi.org/10.1016/j.agrformet.2005.07.005 |
MUL2021AT01 |
Müller MM. 2021. Personal communication, 6 May 2021. |
|
MOR2020IT01 |
Moris JV, Conedera M, Nisi L, Bernardi M, Cesti G, Pezzatti GB. 2020. Lightning-caused fires in the Alps: identifying the igniting strokes. Agricultural and Forest Meteorology 290: 107990. |
https://doi.org/10.1016/j.agrformet.2020.107990 |
MOR2020CH01 |
Moris JV, Conedera M, Nisi L, Bernardi M, Cesti G, Pezzatti GB. 2020. Lightning-caused fires in the Alps: identifying the igniting strokes. Agricultural and Forest Meteorology 290: 107990. |
https://doi.org/10.1016/j.agrformet.2020.107990 |
PER2021GR01 |
Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557. |
https://doi.org/10.5194/acp-21-17529-2021 |
PER2021FR01 |
Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557. |
https://doi.org/10.5194/acp-21-17529-2021 |
PER2021PT01 |
Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557. |
https://doi.org/10.5194/acp-21-17529-2021 |
PER2021ES01 |
Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557. |
https://doi.org/10.5194/acp-21-17529-2021 |
HES2022US01 |
Hessilt TD, Abatzoglou JT, Chen Y, Randerson JT, Scholten RC, van der Werf G, Veraverbeke S. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters 17: 054008. |
https://doi.org/10.1088/1748-9326/ac6311 |
HES2022US02 |
Hessilt TD, Abatzoglou JT, Chen Y, Randerson JT, Scholten RC, van der Werf G, Veraverbeke S. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters 17: 054008. |
https://doi.org/10.1088/1748-9326/ac6311 |
HES2022CA01 |
Hessilt TD, Abatzoglou JT, Chen Y, Randerson JT, Scholten RC, van der Werf G, Veraverbeke S. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters 17: 054008. |
https://doi.org/10.1088/1748-9326/ac6311 |
MEN2022BR01 |
Menezes LS, de Oliveira AM, Santos FLM, Russo A, de Souza RAF, Roque FO, Libonati R. 2022. Lightning patterns in the Pantanal: untangling natural and anthropogenic-induced wildfires. Science of the Total Environment 820: 153021. |
https://doi.org/10.1016/j.scitotenv.2022.153021 |
PER2022US01 |
Pérez-Invernón FJ, Huntrieser H, Moris JV. 2022. Meteorological conditions associated with lightning igniting fires and long-continuing-current lightning in Arizona, New Mexico and Florida. Fire 5: 96. |
https://doi.org/10.3390/fire5040096 |
PER2022US02 |
Pérez-Invernón FJ, Huntrieser H, Moris JV. 2022. Meteorological conditions associated with lightning igniting fires and long-continuing-current lightning in Arizona, New Mexico and Florida. Fire 5: 96. |
https://doi.org/10.3390/fire5040096 |
PIN2022ES01 |
Pineda N, Altube P, Alcasena FJ, Casellas E, San Segundo H, Montanyà J. 2022. Characterizing the holdover phase of lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology 324: 109111. |
https://doi.org/10.1016/j.agrformet.2022.109111 |
DOR2022AU01 |
Dorph A, Marshall E, Parkins KA, Penman TD. 2022. Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia. Natural Hazards and Earth System Sciences 22: 3487-3499. |
https://doi.org/10.5194/nhess-22-3487-2022 |
XUW2022RU01 |
Xu W, Scholten RC, Hessilt TD, Liu Y, Veraverbeke S. 2022. Overwintering fires rising in eastern Siberia. Environmental Research Letters 17: 045005. |
https://doi.org/10.1088/1748-9326/ac59aa |
WOT2022CA01 |
Wotton BM. 2022. Personal communication, 2 September 2022. |
|
WOT2022CA02 |
Wotton BM. 2022. Personal communication, 2 September 2022. |
|
WOT2022CA03 |
Wotton BM. 2022. Personal communication, 2 September 2022. |
|
WOT2022CA04 |
Wotton BM. 2022. Personal communication, 2 September 2022. |
|
WOT2022CA05 |
Wotton BM. 2022. Personal communication, 2 September 2022. |
|
WOT2022CA06 |
Wotton BM. 2022. Personal communication, 2 September 2022. |
|