List of references

 

Study_id

Citation

DOI

CON2006CH01

Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F. 2006. Lightning-induced fires in the alpine region: an increasing problem. Presented at the V International Conference on Forest Fire Research, Coimbra, Portugal, 9 pp.

 

CON2006IT01

Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F. 2006. Lightning-induced fires in the alpine region: an increasing problem. Presented at the V International Conference on Forest Fire Research, Coimbra, Portugal, 9 pp.

 

KOU1967CA01

Kourtz P. 1967. Lightning behaviour and lightning fires in Canadian forests. Department of Forestry and Rural Development, Publication No. 1179, Ottawa, Canada, 37 pp.

 

NAS1996CA01

Nash CH, Johnson EA. 1996. Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Canadian Journal of Forest Research 26: 1859-1874.

https://doi.org/10.1139/x26-211

WOT2005CA01

Wotton BM, Martell DL. 2005. A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research 35: 1389-1401.

https://doi.org/10.1139/x05-071

SCH2019US01

Schultz CJ, Nauslar NJ, Wachter JB, Hain CR, Bell JR. 2019. Spatial, temporal and electrical characteristics of lightning in reported lightning-initiated wildfire events. Fire 2: 18.

https://doi.org/10.3390/fire2020018

MAC2019US01

MacNamara BR. 2019. Flash characteristics and precipitation metrics of western U.S. lightning-initiated wildfires. MSc Thesis, Florida State University, USA, 74 pp.

 

DOW2009AU01

Dowdy AJ, Mills GA. 2009. Atmospheric states associated with the ignition of lightning-attributed fires. Centre for Australian Weather and Climate Research, Technical Report No. 019, Melbourne, Australia, 42 pp.

 

PIN2014ES01

Pineda N, Montanyà J, van der Velde OA. 2014. Characteristics of lightning related to wildfire ignitions in Catalonia. Atmospheric Research 135-136: 380-387.

https://doi.org/10.1016/j.atmosres.2012.07.011

PIN2017ES01

Pineda N, Rigo T. 2017. The rainfall factor in lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology 239: 249-263.

https://doi.org/10.1016/j.agrformet.2017.03.016

GIS1926US01

Gisbone HT. 1926. Lightning and forest fires in the northern Rocky Mountain region. Monthly Weather Review 54: 281-286.

https://doi.org/10.1175/1520-0493(1926)54<281:LAFFIT>2.0.CO;2

GIS1931US01

Gisbone HT. 1931. A five-year record of lightning storms and forest fires. Monthly Weather Review 59: 139-150.

https://doi.org/10.1175/1520-0493(1931)59<139:AFROLS>2.0.CO;2

BAR1951US01

Barrows JS. 1951. Forest fires in the Northern Rocky Mountains. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Research Paper RM-28, Missoula, USA, 252 pp.

 

TAY1969US01

Taylor AR. 1969. Lightning effects on the forest complex. Proceedings of the 9th Tall Timbers Fire Ecology Conference, Tallahassee, USA: 127-150.

 

SHO1923US01

Show SB, Kotok EI. 1923. The occurrence of lightning storms in relation to forest fires in California. Monthly Weather Review 51: 175-180.

https://doi.org/10.1175/1520-0493(1923)51<175:TOOLSI>2.0.CO;2

SHO1930US01

Show SB, Kotok EI. 1930. The determination of hour control for adequate fire protection in the major cover types of the California Pine Region. USDA, Technical Bulletin No. 209, Washington D.C., USA, 47 pp.

 

BAR1978US01

Barrows JS. 1978. Lightning fires in Southwestern forests. Final Report for Northern Forest Fire Laboratory, Missoula, USA, 167 pp.

 

MOR1948US01

Morris WG. 1948. Lightning fire discovery time on National Forests in Oregon and Washington. Fire Control Notes 9 (4): 1-5.

 

DUN2010US01

Duncan BW, Adrian FW, Stolen ED. 2010. Isolating the lightning ignition regime from a contemporary background fire regime in east-central Florida, USA. Canadian Journal of Forest Research 40: 286-297.

https://doi.org/10.1139/X09-193

LAR2005FI01

Larjavaara M, Pennanen J, Tuomi TJ. 2005. Lightning that ignites forest fires in Finland. Agricultural and Forest Meteorology 132: 171-180.

https://doi.org/10.1016/j.agrformet.2005.07.005

MUL2021AT01

Müller MM. 2021. Personal communication, 6 May 2021.

 

MOR2020IT01

Moris JV, Conedera M, Nisi L, Bernardi M, Cesti G, Pezzatti GB. 2020. Lightning-caused fires in the Alps: identifying the igniting strokes. Agricultural and Forest Meteorology 290: 107990.

https://doi.org/10.1016/j.agrformet.2020.107990

MOR2020CH01

Moris JV, Conedera M, Nisi L, Bernardi M, Cesti G, Pezzatti GB. 2020. Lightning-caused fires in the Alps: identifying the igniting strokes. Agricultural and Forest Meteorology 290: 107990.

https://doi.org/10.1016/j.agrformet.2020.107990

PER2021GR01

Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557.

https://doi.org/10.5194/acp-21-17529-2021

PER2021FR01

Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557.

https://doi.org/10.5194/acp-21-17529-2021

PER2021PT01

Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557.

https://doi.org/10.5194/acp-21-17529-2021

PER2021ES01

Pérez-Invernón FJ, Huntrieser H, Soler S, Gordillo-Vázquez FJ, Pineda N, Navarro-González J, Reglero V, Montanyà J, van der Velde O, Koutsias N. 2021. Lightning-ignited wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmospheric Chemistry and Physics 21: 17529-17557.

https://doi.org/10.5194/acp-21-17529-2021

HES2022US01

Hessilt TD, Abatzoglou JT, Chen Y, Randerson JT, Scholten RC, van der Werf G, Veraverbeke S. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters 17: 054008.

https://doi.org/10.1088/1748-9326/ac6311

HES2022US02

Hessilt TD, Abatzoglou JT, Chen Y, Randerson JT, Scholten RC, van der Werf G, Veraverbeke S. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters 17: 054008.

https://doi.org/10.1088/1748-9326/ac6311

HES2022CA01

Hessilt TD, Abatzoglou JT, Chen Y, Randerson JT, Scholten RC, van der Werf G, Veraverbeke S. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters 17: 054008.

https://doi.org/10.1088/1748-9326/ac6311

MEN2022BR01

Menezes LS, de Oliveira AM, Santos FLM, Russo A, de Souza RAF, Roque FO, Libonati R. 2022. Lightning patterns in the Pantanal: untangling natural and anthropogenic-induced wildfires. Science of the Total Environment 820: 153021.

https://doi.org/10.1016/j.scitotenv.2022.153021

PER2022US01

Pérez-Invernón FJ, Huntrieser H, Moris JV. 2022. Meteorological conditions associated with lightning igniting fires and long-continuing-current lightning in Arizona, New Mexico and Florida. Fire 5: 96.

https://doi.org/10.3390/fire5040096

PER2022US02

Pérez-Invernón FJ, Huntrieser H, Moris JV. 2022. Meteorological conditions associated with lightning igniting fires and long-continuing-current lightning in Arizona, New Mexico and Florida. Fire 5: 96.

https://doi.org/10.3390/fire5040096

PIN2022ES01

Pineda N, Altube P, Alcasena FJ, Casellas E, San Segundo H, Montanyà J. 2022. Characterizing the holdover phase of lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology 324: 109111.

https://doi.org/10.1016/j.agrformet.2022.109111

DOR2022AU01

Dorph A, Marshall E, Parkins KA, Penman TD. 2022. Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia. Natural Hazards and Earth System Sciences 22: 3487-3499.

https://doi.org/10.5194/nhess-22-3487-2022

XUW2022RU01

Xu W, Scholten RC, Hessilt TD, Liu Y, Veraverbeke S. 2022. Overwintering fires rising in eastern Siberia. Environmental Research Letters 17: 045005.

https://doi.org/10.1088/1748-9326/ac59aa

WOT2022CA01

Wotton BM. 2022. Personal communication, 2 September 2022.

 

WOT2022CA02

Wotton BM. 2022. Personal communication, 2 September 2022.

 

WOT2022CA03

Wotton BM. 2022. Personal communication, 2 September 2022.

 

WOT2022CA04

Wotton BM. 2022. Personal communication, 2 September 2022.

 

WOT2022CA05

Wotton BM. 2022. Personal communication, 2 September 2022.

 

WOT2022CA06

Wotton BM. 2022. Personal communication, 2 September 2022.