Ir a la página de inicio del Gobierno del Principado de Asturias

Datos del Documento

Utilice este identificador para citar o enlazar este documento: https://ria.asturias.es/RIA/handle/123456789/2082


Título: Using artificial intelligence to design and implement a morphological assesment system in beef cattle
Autores: Goyache, Félix
Coz, J. J.
Quevedo, J. R.
López, S.
Alonso, J.
Ranilla, J.
Luaces, O.
Álvarez, Isabel
Bahamonde Rionda, Antonio
Palabras Claves: Artificial intelligence
Beef cattle
Linear type
Machine learning
Fecha Edición: 2001
Editor: British Society of Animal Science
Cita Bibliográfica: Goyache, F.; Del Coz, J. J.; Quevedo, J. R.; López, S.; Alonso, J.; Ranilla, J. [et. al]. Using artificial intelligence to design and implement a morphological assesment system in beef cattle. Animal Science. 2001; 73 (1): 49-60.
Resumen: In this paper a methodology is developed to improve the design and implementation of a linear morphological system in beef cattle using artificial intelligence. The proposed process involves an iterative mechanism where type traits are successively defined and computationally represented using knowledge engineering methodologies, scored by a set of trained human experts and finally, analysed by means of four reputed machine learning algorithms. The results thus achieved serve as feed back to the next iteration in order to improve the accuracy and efficacy of the proposed assessment system. A sample of 260 conformation records of the Asturiana de los Valles beef cattle breed is shown to illustrate the methodology. Three sources of inconsistency were detected: (a) the existence of different interpretations of the trait's definition, increasing the subjectivity of the assessment; (b) the narrow range of variation of some of the anatomical traits assessed; (c) the inclusion of some complex traits in the assessment system. In this sense, the reopening of the evaluated Asturiana de los Valles assessment system is recommended. In spite of the difficulty of collecting data from live animals, further implications of the artificial intelligence systems on morphological assessment are pointed out.
URI: https://ria.asturias.es/RIA/handle/123456789/2082
ISSN: 1357-7298
Aparece en las Colecciones:Agroalimentación y Ganadería
Open Access DRIVERset

Archivos en este documento:



Archivo TamañoFormato
Archivo.pdf2,61 MBAdobe PDFVer/Abrir



logo

Todos los documentos en RIA están protegidos por derechos de autor.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Contacto