Datos del Documento

Por favor, use este identificador para citar o enlazar este documento: https://ria.asturias.es/RIA/handle/123456789/3848
Título : Learning data structure from classes: A case study applied to population genetics
Autor : del Coz, J. J.
Díez, J.
Bahamonde, A.
Goyache, F.
Palabras clave : Clustering
Hierarchical classification
Pairwise classification
Fecha de publicación : jun-2012
Editorial : Elsevier
Citación : del Coz, J.J.; Díez, J.; Bahamonde, A.; Goyache, F. Learning data structure from classes: A case study applied to population genetics. Information Sciences. 2012; 193: 22-35.
Resumen : In most cases, the main goal of machine learning and data mining applications is to obtain good classifiers. However, final users, for instance researchers in other fields, sometimes prefer to infer new knowledge about their domain that may be useful to confirm or reject their hypotheses. This paper presents a learning method that works along these lines, in addition to reporting three interesting applications in the field of population genetics in which the aim is to discover relationships between species or breeds according to their genotypes. The proposed method has two steps: first it builds a hierarchical clustering of the set of classes and then a hierarchical classifier is learned. Both models can be analyzed by experts to extract useful information about their domain. In addition, we propose a new method for learning the hierarchical classifier. By means of a voting scheme employing pairwise binary models constrained by the hierarchical structure, the proposed classifier is computationally more efficient than previous approaches while improving on their performance.
URI : http://ria.asturias.es/RIA/handle/123456789/3848
ISSN : 0020-0255
Aparece en las colecciones: Agroalimentación y Ganadería
Open Access DRIVERset

Archivos en este documento:
Fichero Tamaño Formato  
Archivo.pdf631.88 kBAdobe PDFVer/Abrir
Mostrar el registro Completo

Ver estadísticas del documento

Este documento está sujeto a una licencia Creative Commons: Licencia Creative Commons Creative Commons