Datos del Documento


Por favor, use este identificador para citar o enlazar este documento: https://ria.asturias.es/RIA/handle/123456789/523
Título : Using machine learning procedures to ascertain the influence of beef carcass profiles on carcass conformation scores
Autor : Díez, Jorge
Albertí, P.
Ripoll, G.
Lahoz, F.
Fernández, Itziar
Olleta, José L.
Panea, Begoña
Sañudo, Carlos
Bahamonde Rionda, Antonio
Goyache, Félix
Palabras clave : Bovine carcass
Conformation assessment
SEUROP
Artificial intelligence
Machine learning
Relevancy
Fecha de publicación : 2006
Editorial : Elsevier
Citación : Díez, J.; Albertí, P.; Ripoll, G.; Lahoz, F.; Fernández, I.; Olleta, J.L. [et.al]. Using machine learning procedures to ascertain the influence of beef carcass profiles on carcass conformation scores. Meat Science. 2006; 73: 109–115 .
Resumen : In this study, a total of 163 young-bull carcasses belonging to seven Spanish native beef cattle breeds showing substantial carcass variation were photographed in order to obtain digital assessments of carcass dimensions and profiles. This dataset was then analysed using machine learning (ML) methodologies to ascertain the influence of carcass profiles on the grade obtained using the SEUROP system. To achieve this goal, carcasses were obtained using the same standard feeding regime and classified homogeneous conditions in order to avoid non-linear behaviour in grading performance. Carcass weight affects grading to a large extent and the classification error obtained when this attribute was included in the training sets was consistently lower than when it was not. However, carcass profile information was considered non-relevant by the ML algorithm in earlier stages of the analysis. Furthermore, when carcass weight was taken into account, the ML algorithm used only easy-to-measure attributes to clone the classifiers decisions. Here we confirm the possibility of designing a more objective and easy-to-interpret system to classify the most common types of carcass in the territory of the EU using only a few single attributes that are easily obtained in an industrial environment.
URI : http://ria.asturias.es/RIA/handle/123456789/523
ISSN : 0309-1740
Aparece en las colecciones: Agroalimentación y Ganadería
Open Access DRIVERset

Archivos en este documento:
Fichero Tamaño Formato  
Archivo.pdf275.2 kBAdobe PDFVer/Abrir
Mostrar el registro Completo


Ver estadísticas del documento


Este documento está sujeto a una licencia Creative Commons: Licencia Creative Commons Creative Commons