Datos del Documento


Por favor, use este identificador para citar o enlazar este documento: https://ria.asturias.es/RIA/handle/123456789/7727
Registro de Metadatos Completo
Campo Dublin Core Valor Idioma
dc.contributor.authorFernández, Lucía-
dc.contributor.authorGonzález, Silvia-
dc.contributor.authorCampelo, Ana Belén-
dc.contributor.authorMartínez, Beatriz-
dc.contributor.authorRodríguez, Ana-
dc.contributor.authorGarcía, Pilar-
dc.date.accessioned2017-01-25T09:02:11Z-
dc.date.available2017-01-25T09:02:11Z-
dc.date.issued2017-01-19-
dc.identifier.citationFernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci Rep. 2017;7:40965.eng
dc.identifier.issn2045-2322-
dc.identifier.urihttp://ria.asturias.es/RIA/handle/123456789/7727-
dc.description.abstractAn important lesson from the war on pathogenic bacteria has been the need to understand the physiological responses and evolution of natural microbial communities. Bacterial populations in the environment are generally forming biofilms subject to some level of phage predation. These multicellular communities are notoriously resistant to antimicrobials and, consequently, very difficult to eradicate. This has sparked the search for new therapeutic alternatives, including phage therapy. This study demonstrates that S. aureus biofilms formed in the presence of a non-lethal dose of phage phiIPLA-RODI exhibit a unique physiological state that could potentially benefit both the host and the predator. Thus, biofilms formed under phage pressure are thicker and have a greater DNA content. Also, the virus-infected biofilm displayed major transcriptional differences compared to an untreated control. Significantly, RNA-seq data revealed activation of the stringent response, which could slow down the advance of the bacteriophage within the biofilm. The end result would be an equilibrium that would help bacterial cells to withstand environmental challenges, while maintaining a reservoir of sensitive bacterial cells available to the phage upon reactivation of the dormant carrier population.eng
dc.description.sponsorshipThis study was supported by grants AGL2012-40194-C02-01 (Ministry of Science and Innovation, Spain), AGL2015-65673-R (Program of Science, Technology and Innovation 2013-2017), GRUPIN14-139 (FEDER EU funds, Principado de Asturias, Spain). L.F. was awarded a “Marie Curie Clarin-Cofund” grant (ACB14-01).eng
dc.language.isoengeng
dc.publisherNature Publishing Groupeng
dc.relation.ispartofScientific Reportseng
dc.relation.haspart7eng
dc.relation.hasversion40965eng
dc.relation.isreferencedbyNo, esta versión no ha sido citadaeng
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/deed.eseng
dc.subjectStaphylococcus aureuseng
dc.subjectBiofilmseng
dc.subjectBacteriófagoseng
dc.subject.classificationPublicadoeng
dc.titleLow-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus.eng
dc.typearticleeng
Aparece en las colecciones: Agroalimentación y Ganadería
Open Access DRIVERset

Archivos en este documento:
Fichero Tamaño Formato  
Archivo.pdf1.15 MBAdobe PDFVer/Abrir
Mostrar el registro Básico


Ver estadísticas del documento


Este documento está sujeto a una licencia Creative Commons: Licencia Creative Commons Creative Commons