Datos del Documento

Por favor, use este identificador para citar o enlazar este documento: https://ria.asturias.es/RIA/handle/123456789/11935
Título : Efficient Shaped-Beam Reflectarray Design Using Machine Learning Techniques
Autor : Rodriguez Prado, Daniel
López Fernádez, Jesús Alberto
Arrebola Baena, Manuel
Goussetis, George
Palabras clave : machine learning
support vector machine (SVM)
Fecha de publicación : sep-2018
Editorial : IEEE
Citación : D. R. Prado, J. A. López-Fernández, M. Arrebola, G. Goussetis, "Efficient Shaped- Beam Reflectarray Design Using Machine Learning Techniques", 48th European Microwave Conference, Madrid, Spain, 23-28/09/2018
Resumen : This papers introduces the use of machine learning techniques for an efficient design of shaped-beam reflectarrays considerably accelerating the overall process while providing accurate results. The technique is based on the use of Support Vector Machines (SVMs) for the characterization of the reflection coefficient matrix, which provides an efficient way for deriving the scattering parameters associated with the unit cell dimensions. In this way, the SVMs are used within the design process to obtain a reflectarray layout instead of a Full-Wave analysis tool based on Local Periodicity (FW-LP). The accuracy of the SVMs is assessed and the influence of the discretization of the angle of incidence is studied. Finally, a considerable acceleration is achieved with regard to the FW-LP and other works in the literature employing Artificial Neural Networks.
URI : https://ria.asturias.es/RIA/handle/123456789/11935
ISBN : 978-2-87487-051-4
Aparece en las colecciones: Ingeniería
Open Access DRIVERset

Archivos en este documento:
Fichero Tamaño Formato  
Archivo.pdf299.96 kBAdobe PDFVer/Abrir
Mostrar el registro Completo

Ver estadísticas del documento

Este documento está sujeto a una licencia Creative Commons: Licencia Creative Commons Creative Commons