Ir a la página de inicio del Gobierno del Principado de Asturias

Datos del Documento

Utilice este identificador para citar o enlazar este documento:

Título: In-Plane Anisotropic and Ultra-Low Loss Polaritons in a Natural van der Waals Crystal
Autores: Ma, Weiliang
Alonso-González, Pablo
Li, Shaojuan
Nikitin, Alexey Y.
Yuan, Jian
Martín-Sánchez, Javier
Taboada-Gutiérrez, Javier
Amenabar, Iban
Li, Peining
Vélez, Saül
Tollan, Christopher
Dai, Zhigao
Zhang, Yupeng
Siriam, Sharath
Kalantar-zadeh, Kourosh
Lee, Shuit-Tong
Hillenbrand, Rainer
Bao, Qiaoliang
Palabras Claves: Física
Fecha Edición: 24-Oct-2018
Editor: Springer Nature Limited
Cita Bibliográfica: Weiliang Ma, Pablo Alonso-González, Shaojuan Li, Alexey Y. Nikitin, Jian Yuan, Javier Martín-Sánchez, Javier Taboada-Gutiérrez, Iban Amenabar, Peining Li, Saül Vélez, Christopher Tollan, Zhigao Dai, Yupeng Zhang, Sharath Siriam, Kourosh Kalantar-Zadeh, Shuit-Tong Lee, Rainer Hillenbrand and Qiaoliang Bao. In-Plane Anisotropic and Ultra-Low Loss Polaritons in a Natural van der Waals Crystal. Nature. 2018; 562: 557-562
Resumen: Polaritons—hybrid light–matter excitations—enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces1,2 (vdW materials). These polaritons can be tuned by electric fields3,4 or by material thickness5, leading to applications including nanolasers6, tunable infrared and terahertz detectors7, and molecular sensors8. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties9. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus9), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO3, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO3 flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons3,4,5. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature10. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride11 and for graphene plasmon polaritons at low temperatures12. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light–matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.
Aparece en las Colecciones:Física
Open Access DRIVERset

Archivos en este documento:

Archivo TamañoFormato
Archivo.pdf2,73 MBAdobe PDFVer/Abrir


Todos los documentos en RIA están protegidos por derechos de autor.

Valid XHTML 1.0! DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Contacto