Ir a la página de inicio del Gobierno del Principado de Asturias

Datos del Documento

Utilice este identificador para citar o enlazar este documento:

Título: Homoclinic organization in the Hindmarsh-Rose model: a three parameter study
Autores: Barrio Gil, Roberto
Ibáñez Mesa, Santiago
Pérez Pérez, Lucía
Palabras Claves: Matemática Aplicada
Modelos neuronales
Fecha Edición: 2020
Resumen: Bursting phenomena are found in a wide variety of fast–slow systems. In this article, we consider the Hindmarsh–Rose neuron model, where, as it is known in the literature, there are homoclinic bifurcations involved in the bursting dynamics. However, the global homoclinic structure is far from being fully understood. Working in a three-parameter space, the results of our numerical analysis show a complex atlas of bifurcations, which extends from the singular limit to regions where a fast–slow perspective no longer applies. Based on this information, we propose a global theoretical description. Surfaces of codimension-one homoclinic bifurcations are exponentially close to each other in the fast–slow regime. Remarkably, explained by the specific properties of these surfaces, we show how the Hindmarsh–Rose model exhibits isolas of homoclinic bifurcations when appropriate two-dimensional slices are considered in the three-parameter space. On the other hand, these homoclinic bifurcation surfaces contain curves corresponding to parameter values where additional degeneracies are exhibited. These codimension-two bifurcation curves organize the bifurcations associated with the spike-adding process and they behave like the “spines-of-a-book,” gathering “pages” of bifurcations of periodic orbits. Depending on how the parameter space is explored, homoclinic phenomena may be absent or far away, but their organizing role in the bursting dynamics is beyond doubt, since the involved bifurcations are generated in them. This is shown in the global analysis and in the proposed theoretical scheme.
Aparece en las Colecciones:Matemáticas

Archivos en este documento:

Archivo TamañoFormato
LPerez_repositorio_chaos2020.pdf9,99 MBAdobe PDFVer/Abrir

Todos los documentos en RIA están protegidos por derechos de autor.

Valid XHTML 1.0! DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Contacto