Datos del Documento
Por favor, use este identificador para citar o enlazar este documento:
https://ria.asturias.es/RIA/handle/123456789/14882| Título : | Convergence theorems for random elements in convex combination spaces |
| Autor : | Alonso de la Fuente, Miriam Terán, Pedro |
| Palabras clave : | Matemáticas Estadística Probabilidad |
| Fecha de publicación : | 30-abr-2023 |
| Editorial : | Elsevier |
| Citación : | Alonso de la Fuente M, Terán P. Convergence theorems for random elements in convex combination spaces. Fuzzy Sets Syst. 2023; 458: 69-93 https://doi.org/10.1016/j.fss.2022.06.019 |
| Resumen : | A Vitali convergence theorem is proved for subspaces of an abstract convex combination space which admits a complete separable metric. The convergence may be in that metric or, more generally, in a quasimetric satisfying weaker properties. Versions for convergence in probability and in distribution are given. As applications, we show that some dominated convergence theorems in the literature of fuzzy random variables and random compact sets can be recovered or improved, and we derive new convergence theorems in another space of sets and in a space of probability distributions. |
| Descripción : | Enlace a la publicación original (licencia CC BY-NC-ND): https://doi.org/10.1016/j.fss.2022.06.019 |
| URI : | https://ria.asturias.es/RIA/handle/123456789/14882 |
| Aparece en las colecciones: | Matemáticas |
Archivos en este documento:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 1 Convergence theorems.pdf | 476.89 kB | Adobe PDF | Ver/Abrir |
Este documento está sujeto a una licencia Creative Commons:
Licencia Creative Commons