Datos del Documento
Por favor, use este identificador para citar o enlazar este documento:
https://ria.asturias.es/RIA/handle/123456789/14886| Título : | Sets of Probability Measures and Convex Combination Spaces |
| Autor : | Alonso de la Fuente, Miriam Terán, Pedro |
| Palabras clave : | Matemáticas Estadística Probabilidad |
| Fecha de publicación : | 2023 |
| Editorial : | PMLR |
| Citación : | Alonso de la Fuente M, Terán P. Sets of probability measures and convex combination spaces. En: Proceedings of the Thirteenth International Symposium on Imprecise Probability. PMLR 215; 2023. 3-10 |
| Citación : | Proceedings of Machine Learning Research;215 |
| Resumen : | The Wasserstein distances between probability distributions are an important tool in modern probability theory which has been generalized to sets of probability distributions. We will show that the (generalized) L1-Wasserstein metric, with the operations of convolution and rescaling, fits in the abstract framework of convex combination spaces: nonlinear metric spaces preserving some of the nice properties of a normed space but accomodating other unusual behaviours. For instance, unlike in a linear space, a singleton {𝑃} is typically not convex (it is so only if 𝑃 is degenerate). Also, some theorems for convex combination spaces are applied to this setting. |
| Descripción : | Enlace a la publicación original: https://proceedings.mlr.press/v215/fuente23a.html |
| URI : | https://ria.asturias.es/RIA/handle/123456789/14886 |
| Aparece en las colecciones: | Matemáticas |
Archivos en este documento:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 5 Sets of probability measures and CCE.pdf | 283.89 kB | Adobe PDF | Ver/Abrir |
Este documento está sujeto a una licencia Creative Commons:
Licencia Creative Commons