Ir a la página de inicio del Gobierno del Principado de Asturias

Datos del Documento

Utilice este identificador para citar o enlazar este documento:

Título: Intelligent Decision Support System for Real-Time Water Demand Management
Autores: Ponte, Borja
De la Fuente, David
Parreño, Jose
Pino, Raul
Fecha Edición: 2016
Resumen: Environmental and demographic pressures have led to the current importance of Water Demand Management (WDM), where the concepts of efficiency and sustainability now play a key role. Water must be conveyed to where it is needed, in the right quantity, at the required pressure, and at the right time using the fewest resources. This paper shows how modern Artificial Intelligence (AI) techniques can be applied on this issue from a holistic perspective. More specifically, the multi-agent methodology has been used in order to design an Intelligent Decision Support System (IDSS) for real-time WDM. It determines the optimal pumping quantity from the storage reservoirs to the points-of-consumption in an hourly basis. This application integrates advanced forecasting techniques, such as Artificial Neural Networks (ANNs), and other components within the overall aim of minimizing WDM costs. In the tests we have performed, the system achieves a large reduction in these costs. Moreover, the multi-agent environment has demonstrated to propose an appropriate framework to tackle this issue.
Aparece en las Colecciones:Gestión de empresas
Open Access DRIVERset

Archivos en este documento:

Archivo TamañoFormato
Archivo.pdf1,05 MBAdobe PDFVer/Abrir


Todos los documentos en RIA están protegidos por derechos de autor.

Valid XHTML 1.0! DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Contacto