Ir a la página de inicio del Gobierno del Principado de Asturias

Datos del Documento

Utilice este identificador para citar o enlazar este documento:

Título: Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery
Autores: Peón, Juanjo
Recondo, Carmen
Fernández, Susana
F. Calleja, Javier
De Miguel, Eduardo
Carretero, Laura
Fecha Edición: 24-Nov-2017
Editor: MDPI
Cita Bibliográfica: Peón, J.; Recondo, C.; Fernández, S.; F. Calleja, J.; De Miguel, E.; Carretero, L. Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery. Remote Sens. 2017; 9 (12): 1211.
Resumen: The Airborne Hyperspectral Scanner (AHS) and the Hyperion satellite hyperspectral sensors were evaluated for their ability to predict topsoil organic carbon (C) in burned mountain areas of northwestern Spain slightly covered by heather vegetation. Predictive models that estimated total organic C (TOC) and oxidizable organic C (OC) content were calibrated using two datasets: a ground observation dataset with 39 topsoil samples collected in the field (for models built using AHS data), and a dataset with 200 TOC/OC observations predicted by AHS (for models built using Hyperion data). For both datasets, the prediction was performed by stepwise multiple linear regression (SMLR) using reflectances and spectral indices (SI) obtained from the images, and by the widely-used partial least squares regression (PLSR) method. SMLR provided a performance comparable to or even better than PLSR, while using a lower number of channels. SMLR models for the AHS were based on a maximum of eight indices, and showed a coefficient of determination in the leave-one-out cross-validation R2 = 0.60–0.62, while models for the Hyperion sensor showed R2 = 0.49–0.61, using a maximum of 20 indices. Although slightly worse models were obtained for the Hyperion sensor, which was attributed to its lower signal-to-noise ratio (SNR), the prediction of TOC/OC was consistent across both sensors. The relevant wavelengths for TOC/OC predictions were the red region of the spectrum (600–700 nm), and the short wave infrared region between ~2000–2250 nm. The use of SMLR and spectral indices based on reference channels at ~1000 nm was suitable to quantify topsoil C, and provided an alternative to the more complex PLSR method.
ISSN: 2072-4292
Aparece en las Colecciones:Geomática
Open Access DRIVERset

Archivos en este documento:

Archivo TamañoFormato
Archivo.pdf6,42 MBAdobe PDFVer/Abrir

Todos los documentos en RIA están protegidos por derechos de autor.

Valid XHTML 1.0! DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Contacto